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Introduction

Recall the definition of f (n) = O(g(n)):

f (n) = O(g(n)), if there exist two positive constants c1 and c2

such that f (n) ≤ c1 · g(n) holds for all n ≥ c2.

Last week, we have learned two different ways to decide whether one
function f (n) = O(g(n)):

Finding appropriate “constants c1, c2” to prove existence.

if limn→∞
f (n)
g(n) exists and is less or equals to some constant c ≥ 0,

then f (n) = O(g(n)).

In this tutorial, we will apply both methods through some exercises.
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Exercise 1

Let f (n) = 10n + 5 and g(n) = n2. Prove f (n) = O(g(n)) and

g(n) 6= O(f (n)).
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Exercise 1

Let f (n) = 10n + 5 and g(n) = n2. Prove f (n) = O(g(n)) and
g(n) 6= O(f (n)).

Proof of f (n) = O(g(n))

Direction 1: Constant Finding

f (n) = O(g(n)), if there exist two positive constants c1 and c2

such that f (n) ≤ c1 · g(n) holds for all n ≥ c2.
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Exercise 1

Let f (n) = 10n + 5 and g(n) = n2. Prove f (n) = O(g(n)) and
g(n) 6= O(f (n)).

Proof of f (n) = O(g(n))

Direction 1: Constant Finding

Our mission is to find c1, c2 to make f (n) ≤ c1 · g(n) hold for all n ≥ c2.

Remember: we do not need to find the smallest c1, c2; instead, it suffices

to obtain any c1, c2 that can do the job. Indeed, we will often go for

some “easy” selections that can simplify derivation.
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Exercise 1

Let f (n) = 10n + 5 and g(n) = n2. Prove f (n) = O(g(n)) and
g(n) 6= O(f (n)).

Direction 1: Constant Finding

(try c1 = 5)

f (n) ≤ c1 · g(n)

⇔ 10n + 5 ≤ c1 · n2

⇔ 5(2n + 1) ≤ 5 · n2

⇔ 2n + 1 ≤ n2

⇔ 2 ≤ (n − 1)2

⇐ 3 ≤ n

Hence, it suffices to set c2 = 3. So there exist positive constants c1, c2

namely c1 = 5, c2 = 3 such that f (n) ≤ c1 · g(n) holds for all n ≥ c2.
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Exercise 1

Let f (n) = 10n + 5 and g(n) = n2. Prove f (n) = O(g(n)) and
g(n) 6= O(f (n)).

Proof of f (n) = O(g(n))

Direction 2: Inspecting limn→∞
f (n)
g(n)

lim
n→∞

10n + 5

n2
= lim

n→∞

10 + 5/n

n
= 0.

Hence, f (n) = O(g(n)).
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Exercise 1

Let f (n) = 10n + 5 and g(n) = n2. Prove f (n) = O(g(n)) and
g(n) 6= O(f (n)).

Proof of g(n) 6= O(f (n))

Prove by contradiction

Let us prove this by contradiction. Suppose, on the contrary, that
g(n) = O(f (n)). This means the existence of constants c1, c2 such that,
we have for all n ≥ c2

n2 ≤ c1 · (10n + 5)

⇒ n2 ≤ c1 · 20n

⇔ n ≤ 20c1

which cannot always hold for all n ≥ c2. This completes the proof.
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Exercise 2

Let f (n) = 5 log2 n and g(n) =
√
n. Prove f (n) = O(g(n)) and

g(n) 6= O(f (n)).
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Proof of f (n) = O(g(n))

Direction 1: Constant Finding

Setting c1 = 5, we want:

5 log2 n ≤ 5 ·
√
n

⇔ log2 n ≤
√
n

Hence, it suffices to set c2 = 64. So there exist positive constants c1, c2

namely c1 = 5, c2 = 64 such that f (n) ≤ c1 · g(n) holds for all n ≥ c2.

CSCI2100 2020 fall, The Chinese University of HongKong Exercises on the Growth of Functions



Proof of f (n) = O(g(n))

Direction 2: Inspecting limn→∞
f (n)
g(n)

lim
n→∞

f (n)

g(n)
= lim

n→∞

5 log2 n√
n

= 0.

Thus, we have f (n) = O(g(n)).
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Proof of g(n) 6= O(f (n))

Prove by Contradiction

We prove this by contradiction. Suppose that g(n) = O(f (n)). It implies
that there exist constants c1, c2 such that for all n ≥ c2, we have

√
n ≤ c1 · 5 · log2 n

⇔
√
n

log2 n
≤ 5c1

which cannot always hold for all n ≥ c2. This completes the proof.
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Exercise 3

Given that f (n) = O(g(n)) where f (n), g(n) ≥ 0, prove√
f (n) = O(

√
g(n)).
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Since f (n) = O(g(n)) implies the existence of constants c1 and c2 such
that f (n) ≤ c1 · g(n) holds for all n ≥ c2.

Thus: √
f (n) ≤

√
c1 · g(n) =

√
c1 ·

√
g(n)

holds for all n ≥ c2.

Therefore, there exist positive constants c
′

1, c
′

2 namely c
′

1 =
√
c1, c

′

2 = c2

such that
√
f (n) ≤ c1 ·

√
g(n) holds for all n ≥ c

′

2.

CSCI2100 2020 fall, The Chinese University of HongKong Exercises on the Growth of Functions



Exercise 4

Consider functions of n: f1(n), f2(n), g1(n) and g2(n) such that:

f1(n) = O(g1(n)) and f2(n) = O(g2(n))

Prove f1(n) + f2(n) = O(g1(n) + g2(n)).
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Since f1(n) = O(g1(n)), there exist constants c1 and c2 such that
f1(n) ≤ c1 · g1(n) holds for all n ≥ c2.

Similarly, f2(n) = O(g2(n)) implies the existence of constants c ′1 and c ′2
such that f2(n) ≤ c ′1 · g2(n) holds for all n ≥ c ′2.

Thus:

f1(n) + f2(n) ≤ c1 · g1(n) + c ′1 · g2(n) ≤ max{c1, c
′
1} · (g1(n) + g2(n))

for all n ≥ max{c2, c
′
2}.

Therefore, f1(n) + f2(n) = O(g1(n) + g2(n)).
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