Exercises on the Growth of Functions

CSCI2100 Tutorial 2

Department of Computer Science and Engineering

The Chinese University of HongKong

Adapted from the slides of the previous offerings of the course

Introduction

Recall the definition of $f(n)=O(g(n))$:
$f(n)=O(g(n))$, if there exist two positive constants c_{1} and c_{2} such that $f(n) \leq c_{1} \cdot g(n)$ holds for all $n \geq c_{2}$.

Last week, we have learned two different ways to decide whether one function $f(n)=O(g(n))$:

- Finding appropriate "constants c_{1}, c_{2} " to prove existence.
- if $\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}$ exists and is less or equals to some constant $c \geq 0$, then $f(n)=O(g(n))$.

In this tutorial, we will apply both methods through some exercises.

Exercise 1

Let $f(n)=10 n+5$ and $g(n)=n^{2}$. Prove $f(n)=O(g(n))$ and $g(n) \neq O(f(n))$.

Exercise 1

Let $f(n)=10 n+5$ and $g(n)=n^{2}$. Prove $f(n)=O(g(n))$ and $g(n) \neq O(f(n))$.
$\overline{\text { Proof of } f(n)=O(g(n))}$
Direction 1: Constant Finding
$f(n)=O(g(n))$, if there exist two positive constants c_{1} and c_{2} such that $f(n) \leq c_{1} \cdot g(n)$ holds for all $n \geq c_{2}$.

Exercise 1

Let $f(n)=10 n+5$ and $g(n)=n^{2}$. Prove $f(n)=O(g(n))$ and $g(n) \neq O(f(n))$.
$\overline{\text { Proof of } f(n)=O(g(n))}$

$\overline{\text { Direction 1: Constant Finding }}$

Our mission is to find c_{1}, c_{2} to make $f(n) \leq c_{1} \cdot g(n)$ hold for all $n \geq c_{2}$. Remember: we do not need to find the smallest c_{1}, c_{2}; instead, it suffices to obtain any c_{1}, c_{2} that can do the job. Indeed, we will often go for some "easy" selections that can simplify derivation.

Exercise 1

Let $f(n)=10 n+5$ and $g(n)=n^{2}$. Prove $f(n)=O(g(n))$ and $g(n) \neq O(f(n))$.

Direction 1: Constant Finding

$\left(\operatorname{try} c_{1}=5\right)$

$$
\begin{array}{ll}
& f(n) \leq c_{1} \cdot g(n) \\
\Leftrightarrow & 10 n+5 \leq c_{1} \cdot n^{2} \\
\Leftrightarrow & 5(2 n+1) \leq 5 \cdot n^{2} \\
\Leftrightarrow & 2 n+1 \leq n^{2} \\
\Leftrightarrow & 2 \leq(n-1)^{2} \\
\Leftrightarrow & 3 \leq n
\end{array}
$$

Hence, it suffices to set $c_{2}=3$. So there exist positive constants c_{1}, c_{2} namely $c_{1}=5, c_{2}=3$ such that $f(n) \leq c_{1} \cdot g(n)$ holds for all $n \geq c_{2}$.

Exercise 1

Let $f(n)=10 n+5$ and $g(n)=n^{2}$. Prove $f(n)=O(g(n))$ and $g(n) \neq O(f(n))$.
$\overline{\text { Proof of } f(n)=O(g(n))}$
Direction 2: Inspecting $\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}$

$$
\lim _{n \rightarrow \infty} \frac{10 n+5}{n^{2}}=\lim _{n \rightarrow \infty} \frac{10+5 / n}{n}=0
$$

Hence, $f(n)=O(g(n))$.

Exercise 1

Let $f(n)=10 n+5$ and $g(n)=n^{2}$. Prove $f(n)=O(g(n))$ and $g(n) \neq O(f(n))$.
$\overline{\text { Proof of } g(n) \neq O(f(n))}$
$\overline{\text { Prove by contradiction }}$
Let us prove this by contradiction. Suppose, on the contrary, that $g(n)=O(f(n))$. This means the existence of constants c_{1}, c_{2} such that, we have for all $n \geq c_{2}$

$$
\begin{array}{ll}
& n^{2} \leq c_{1} \cdot(10 n+5) \\
\Rightarrow & n^{2} \leq c_{1} \cdot 20 n \\
\Leftrightarrow & n \leq 20 c_{1}
\end{array}
$$

which cannot always hold for all $n \geq c_{2}$. This completes the proof.

Exercise 2

Let $f(n)=5 \log _{2} n$ and $g(n)=\sqrt{n}$. Prove $f(n)=O(g(n))$ and $g(n) \neq O(f(n))$.
$\overline{\text { Proof of } f(n)=O(g(n))}$
Direction 1: Constant Finding
Setting $c_{1}=5$, we want:

$$
\begin{array}{ll}
& 5 \log _{2} n \leq 5 \cdot \sqrt{n} \\
\Leftrightarrow \quad & \log _{2} n \leq \sqrt{n}
\end{array}
$$

Hence, it suffices to set $c_{2}=64$. So there exist positive constants c_{1}, c_{2} namely $c_{1}=5, c_{2}=64$ such that $f(n) \leq c_{1} \cdot g(n)$ holds for all $n \geq c_{2}$.

Proof of $f(n)=O(g(n))$

Direction 2: Inspecting $\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}$

$$
\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=\lim _{n \rightarrow \infty} \frac{5 \log _{2} n}{\sqrt{n}}=0
$$

Thus, we have $f(n)=O(g(n))$.
$\overline{\text { Proof of } g(n) \neq O(f(n))}$
Prove by Contradiction
We prove this by contradiction. Suppose that $g(n)=O(f(n))$. It implies that there exist constants c_{1}, c_{2} such that for all $n \geq c_{2}$, we have

$$
\begin{array}{ll}
& \sqrt{n} \leq c_{1} \cdot 5 \cdot \log _{2} n \\
\Leftrightarrow \quad & \frac{\sqrt{n}}{\log _{2} n} \leq 5 c_{1}
\end{array}
$$

which cannot always hold for all $n \geq c_{2}$. This completes the proof.

Exercise 3

Given that $f(n)=O(g(n))$ where $f(n), g(n) \geq 0$, prove $\sqrt{f(n)}=O(\sqrt{g(n)})$.

Since $f(n)=O(g(n))$ implies the existence of constants c_{1} and c_{2} such that $f(n) \leq c_{1} \cdot g(n)$ holds for all $n \geq c_{2}$.

Thus:

$$
\sqrt{f(n)} \leq \sqrt{c_{1} \cdot g(n)}=\sqrt{c_{1}} \cdot \sqrt{g(n)}
$$

holds for all $n \geq c_{2}$.
Therefore, there exist positive constants $c_{1}^{\prime}, c_{2}^{\prime}$ namely $c_{1}^{\prime}=\sqrt{c_{1}}, c_{2}^{\prime}=c_{2}$ such that $\sqrt{f(n)} \leq c_{1} \cdot \sqrt{g(n)}$ holds for all $n \geq c_{2}^{\prime}$.

Exercise 4

Consider functions of $n: f_{1}(n), f_{2}(n), g_{1}(n)$ and $g_{2}(n)$ such that:

$$
f_{1}(n)=O\left(g_{1}(n)\right) \text { and } f_{2}(n)=O\left(g_{2}(n)\right)
$$

Prove $f_{1}(n)+f_{2}(n)=O\left(g_{1}(n)+g_{2}(n)\right)$.

Since $f_{1}(n)=O\left(g_{1}(n)\right)$, there exist constants c_{1} and c_{2} such that $f_{1}(n) \leq c_{1} \cdot g_{1}(n)$ holds for all $n \geq c_{2}$.

Similarly, $f_{2}(n)=O\left(g_{2}(n)\right)$ implies the existence of constants c_{1}^{\prime} and c_{2}^{\prime} such that $f_{2}(n) \leq c_{1}^{\prime} \cdot g_{2}(n)$ holds for all $n \geq c_{2}^{\prime}$.

Thus:

$$
f_{1}(n)+f_{2}(n) \leq c_{1} \cdot g_{1}(n)+c_{1}^{\prime} \cdot g_{2}(n) \leq \max \left\{c_{1}, c_{1}^{\prime}\right\} \cdot\left(g_{1}(n)+g_{2}(n)\right)
$$

for all $n \geq \max \left\{c_{2}, c_{2}^{\prime}\right\}$.

Therefore, $f_{1}(n)+f_{2}(n)=O\left(g_{1}(n)+g_{2}(n)\right)$.

