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Example and proof of Dijkstra’s Algorithm

Hao WU

CSE
The Chinese University of Hong Kong

Adapted from the slides of the previous offerings of the course.
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Dijkstra’s Algorithm

The algorithm solves the single-source shortest-paths (SSSP) problem on
a directed graph G = (V ,E ) with positive edge weights.

Let V ′ ⊆ V be the current set of vertices whose shortest paths from the
source vertex s have been found and S = V \V ′.

The crucial part of the algorithm is the edge relaxation idea. Essentially,

we will prove this later, it is to maintain, for each v ∈ S , the “current

shortest” distance from s only through the vertices in V ′.

CSCI2100, CUHK Example and proof of Dijkstra’s Algorithm



3/18

Example

Suppose that the source vertex is a.
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V ′ = ∅ and
S = {a, b, c , d , e, f , g , h, i}.

vertex v dist(v) parent(v)
a 0 nil
b ∞ nil
c ∞ nil
d ∞ nil
e ∞ nil
f ∞ nil
g ∞ nil
h ∞ nil
i ∞ nil

Since dist(a) is the smallest among those of vertices in S , pick a.
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Example

Relax the out-going edges of a:
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V ′ = {a} and
S = {b, c , d , e, f , g , h, i}.

vertex v dist(v) parent(v)
a 0 nil
b ∞→ 2 nil → a
c ∞ nil
d ∞ nil
e ∞ nil
f ∞ nil
g ∞ nil
h ∞ nil
i ∞ nil

The “current shortest” distance of b from a only through the vertices in

V ′ is updated. After then, dist(b) is the smallest among those of vertices

in S . Pick b.
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Example

Relax the out-going edges of b:
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V ′ = {a, b} and
S = {c , d , e, f , g , h, i}.

vertex v dist(v) parent(v)
a 0 nil
b 2 a
c ∞ nil
d ∞→ 5 nil → b
e ∞ nil
f ∞ nil
g ∞ nil
h ∞ nil
i ∞ nil

Similarly, update the “current shortest” distance of d from a only

through the vertices in V ′. And dist(d) is the smallest among those in S .

Pick d .
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Example

Relax the out-going edges of d :
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V ′ = {a, b, d} and
S = {c , e, f , g , h, i}.

vertex v dist(v) parent(v)
a 0 nil
b 2 a
c ∞→ 12 nil → d
d 5 b
e ∞→ 6 nil → d
f ∞ nil
g ∞ nil
h ∞ nil
i ∞ nil

Since after the updates, dist(e) is the smallest among those in S , pick e.
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Example

Relax the out-going edges of e:
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V ′ = {a, b, d , e} and
S = {c , f , g , h, i}.

vertex v dist(v) parent(v)
a 0 nil
b 2 a
c 12 d
d 5 b
e 6 d
f ∞→ 7 nil → e
g ∞ nil
h ∞ nil
i ∞ nil
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Example

Relax the out-going edges of f :

�

�

�

�

�

�

�

�

	

�

�

�

�

�

�

�

�

�

�

�

�

�

V ′ = {a, b, d , e, f } and
S = {c , g , h, i}.

vertex v dist(v) parent(v)
a 0 nil
b 2 a
c 12→10 d → f
d 5 b
e 6 d
f 7 e
g ∞ nil
h ∞→ 11 nil → f
i ∞ nil
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Example

Relax the out-going edges of c :
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V ′ = {a, b, c , d , e, f } and
S = {g , h, i}.

vertex v dist(v) parent(v)
a 0 nil
b 2 a
c 10 f
d 5 b
e 6 d
f 7 e
g ∞ nil
h 11 f
i ∞ nil
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Example

Relax the out-going edges of h:
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V ′ = {a, b, c , d , e, f , h} and
S = {g , i}.

vertex v dist(v) parent(v)
a 0 nil
b 2 a
c 10 f
d 5 b
e 6 d
f 7 e
g ∞→ 12 nil → h
h 11 f
i ∞→ 15 nil → h
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Example

Relax the out-going edges of g :
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V ′ = {a, b, c , d , e, f , g , h} and
S = {i}.

vertex v dist(v) parent(v)
a 0 nil
b 2 a
c 10 f
d 5 b
e 6 d
f 7 e
g 12 h
h 11 f
i 15→ 14 h→ g
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Example

Relax the out-going edges of i :
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V ′ = {a, b, c , d , e, f , g , h, i} and
S = {}.
Done.

vertex v dist(v) parent(v)
a 0 nil
b 2 a
c 10 f
d 5 b
e 6 d
f 7 e
g 12 h
h 11 f
i 14 g

CSCI2100, CUHK Example and proof of Dijkstra’s Algorithm



13/18

Correctness of Dijkstra’s Algorithm

Lemma: When vertex v is removed from S , dist(v) equals precisely
the shortest path distance—denoted as spdist(v)—from s to v .

The correctness of Dijkstra’s algorithm follows from the lemma.
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Correctness of Dijkstra’s Algorithm

We will prove the claim by induction on the sequence of vertices removed.

Base case:
This is obviously true for the first vertex removed, which is s itself
with dist(s) = 0.

Inductive:
Assume the claim is true with respect to all the vertices already
removed. Let v be the next node to be removed. Need to prove
dist(v) = spdist(v).
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Correctness of Dijkstra’s Algorithm

Consider an arbitrary shortest path π from s to v . Let u be the vertex
right before v on π.

Claim: u must have been removed from S .

Our target lemma follows from the above claim because, by our inductive

assumption, dist(u) = spdist(u) when u was removed. Then, the

algorithm relaxed the edge (u, v), which must have set

dist(v) = spdist(u) + w(u, v) = spdist(v).
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Correctness of Dijkstra’s Algorithm

Stronger claim: All the nodes on π from s to u must have been
removed.
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Correctness of Dijkstra’s Algorithm

We will prove the stronger claim by contradiction.

Suppose the statement is not true. When v is to be removed from S ,

another vertex on π — let it be v ′ — still remains in S . Define p as the

vertex right before v ′ on π.
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Correctness of Dijkstra’s Algorithm

By the inductive assumption, dist(p) = spdist(p) when p was removed.
Hence, after relaxing the edge (p, v ′), we have
dist(v ′) = spdist(p) + w(p, v ′) = spdist(v ′).

But this means dist(v ′) = spdist(v ′) < spdist(v) ≤ dist(v)!

Hence, v ′ should be the next vertex to be removed from S , contradicting

the definition of v .
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