Examples and Applications of Binary Search
 CSCI2100 Tutorial 1
 Shangqi Lu

Adapted from the slides of the previous offerings of the course

Outline

- We will first review the binary search algorithm through an example
- And then use the algorithm to solve a "two-sum" problem.

Binary Search Review

- Suppose we have the following sorted input set S , and are trying to find the value 13.

Binary Search Review

- Initializing L to be 1 and R to n (in this case, 8)

Binary Search Review

- Since $L \leq R$
- Proceed by computing $M=(L+R) / 2$

Binary Search Review

- Compare $v=13$ and the value 8 indexed by M
- $v>$ the value indexed by M
- Means that the target is in the right half of the sorted sequence

2	3	5	8	13	21	34	55				
\ldots											

Binary Search Review

- Look at the right half of the sorted sequence
- Set L to be $M+1$ (discard the left half)
- Recompute M

2	3	5	8	13	21	34	55				
\ldots											

Binary Search Review

- Compare v and the value 21 indexed by M
- $v<$ the value indexed by M
- Means that the target is in the left half of the sorted sequence

Binary Search Review

- Set R to be $M-1$ (discard the right half)
- $L, R, M=5$
- $v=$ the value indexed by M, return "yes"

The Two-Sum Problem

- Problem Input:
- A sequence of n positive integers in strictly increasing order in memory at the cells numbered from 1 up to n
- The value n has been placed in Register 1
- A positive integer v has been placed in Register 2
- Goal:
- Determine whether if there exist two different integers x and y in the sorted sequence such that $x+y=v$

2	3	5	7	11	13	17	19	23	29	31	37
\ldots											

Example

- A "yes"-input with $n=12, v=30$

Example

- A "no"-input with $n=12, v=29$

A First Attempt

- Naïve algorithm:
- Enumerate all possible pairs in the sorted sequence
- Check if they sum to v
- There are $\binom{n}{2}=\frac{n(n-1)}{2}$ possible pairs
- Worst-case time: at least $n(n-1) / 2$
- Can we do better than this?
- Hint: Take advantage of the fact that the given sequence is sorted!

Binary Search the Answer

- Goal: Find a pair (x, y) such that $x+y=v$
- Observe that given $\mathrm{x}, y=v-x$, is determined
- Improve the naïve algorithm
- Instead of enumerating all possible y, we can find if there exits an integer $v-x$ in the sequence
- Solution:
- For each x in the sequence:
- set y as $v-x$
- Use binary search to see if y exists in the sequence

The Repeated Binary Search Algorithm

- Pseudocode:

1. Let n be register 1 and v be register 2
2. register $i \leftarrow 1$, register one $\leftarrow 1$
3. while $i \leq n$
4. read into register x the memory cell at address i
5. $\quad y \leftarrow v-x$
6. if BinarySearch $(y)=$ "yes"
7. return "yes"
8. $\quad i \leftarrow i+$ one (effectively increasing i by 1)
9. return "no"

Worst-Case Running Time

- Worst case (when the output is "no")
- This algorithm needs to run binary search n times
- Cost of each binary search: at most $10\left(1+\log _{2} n\right)$
- Cost of the algorithm: at most $100 n\left(1+\log _{2} n\right)$ (a loose upper bound)
- Can we do even better?
- Actually this problem can be solved in at most $100 n$ time --- left for you to try outside the class.

