CSCI2100/ESTR2102: Quiz 1

Hand-write all your solutions on paper. Take a picture of the paper together with your CUHK student ID. Upload the picture to Blackboard or email it to the instructor at taoyf@cse.cuhk.edu.hk. Your must do so within 15 minutes after the quiz has started.

Problem $1(\mathbf{2 0 \%})$. Prove $100 n+10000=O\left(n^{1+c}\right)$ where c is the last digit of your student ID.
Solution. $100 n+10000 \leq 10100 n^{1+c}$ for all $n \geq 1$.
Problem $2(50 \%)$. Prove that n^{2+c} is not $O(n)$ where c is the last digit of your student ID.
Solution. Our proof here assume $c=0$. Assume, for contradiction purposes, that $n^{2}=O(n)$, namely, there exist constants c_{1}, c_{2} such that $n^{2} \leq c_{1} n$ for all $n \geq c_{2}$. This means $n \leq c_{1}$ for all $n \geq c_{2}$, which is impossible and, hence, gives a contradiction.

Problem 3 ($\mathbf{3 0 \%}$). Suppose that A is a sorting algorithm with worst case running time $\Theta\left(n^{2+c}\right)$, where c is the last digit of your student ID. Someone claims that merge sort has smaller running time than A on every possible input. Is the claim correct? Why?

Solution. No. Let S be the set of all possible inputs of size n. Given an input $I \in S$, define $\operatorname{cost}_{I}(A)$ as the running time of A on I. From the fact that A has worst case running time $\Theta\left(n^{2+c}\right)$, we know:

$$
\max _{I \in S} \operatorname{cost}_{I}(\text { merge sort }) \leq \max _{I \in S} \operatorname{cost}_{I}(A)
$$

But this does not mean $\operatorname{cost}_{I}($ merge sort $) \leq \operatorname{cost}_{I}(A)$ for every I.

