CSCI2100/ESTR2102: Midterm - Paper 2

Hand-write all your solutions on paper. Take a picture of the paper **together with** your CUHK student ID. Upload the picture to Blackboard or email it to the instructor at taoyf@cse.cuhk.edu.hk. Your must do so within 15 minutes after the quiz has started.

Let $S_1, S_2, ..., S_l$ be *l* sets of integers such that $n = \sum_{i=1}^l |S_i|$. We want to support the following query:

• q(i,j): report all the numbers in $S_i \cap S_j$.

For example, suppose that we are given l = 4 sets $S_1 = \{1, 4, 7, 11\}$, $S_2 = \{2, 4, 6, 8, 10\}$, $S_3 = \{3, 6, 9, 12\}$ and $S_4 = \{1, 4, 6, 8\}$. For query q(2, 4), the answer should be $\{4, 6, 8\}$.

Problem 1 (20%). Design a data structure with the following guarantees:

- The space consumption is O(n).
- The preprocessing time is $O(n \log n)$.
- The query time for each q(i, j) must be $O(\min\{|S_i|, |S_j|\} \cdot \log n)$.

Answer. In the preprocessing phase, for each S_i $(i \in [1, n])$, store the numbers in S_i in an array A_i and sort the array in $O(|S_i| \cdot \log |S_i|)$ time. The total space is $O(\sum_{i=1}^{l} |S_i|) = O(n)$ and preprocessing time is $O(\sum_{i=1}^{l} |S_i| \log |S_i|) = O(n \log n)$.

Given a query q(i, j), let us assume (without loss of generality) that $|S_i| \leq |S_j|$. Enumerate each number in $x \in S_i$ and use binary search to check if $x \in S_j$. The query time is therefore $O(|S_i| \cdot \log |S_j|) = O(\min\{|S_i|, |S_j|\} \cdot \log n).$

Problem 2 (20%). Design a data structure with the following guarantees:

- The space consumption and preprocessing time are both O(n).
- The query time for each q(i, j) must be $O(\min\{|S_i|, |S_j|\})$ in expectation.

Answer. In the preprocessing phase, for each S_i $(i \in [1, n])$, create a hash table H_i on S_i . The total space and preprocessing time are both $O(\sum_{i=1}^{l} |S_i|) = O(n)$.

Given a query q(i, j), assume (without loss of generality) that $|S_i| \leq |S_j|$. Enumerate each number in $x \in S_i$ and use the hash table on S_j to check if $x \in S_j$. The query time is therefore $O(|S_i|) = O(\min\{|S_i|, |S_j|\})$ in expectation.