CSCI2100/ESTR2102: Midterm - Paper 1

Hand-write all your solutions on paper. Take a picture of the paper **together with** your CUHK student ID. Upload the picture to Blackboard or email it to the instructor at taoyf@cse.cuhk.edu.hk. Your must do so within 15 minutes after the quiz has started.

Problem 1. (30%) Define $f(n) = 1 + c + c^2 + c^3 + ... + c^n$ where c is a positive real number. Prove:

- 1. f(n) = O(n) if c = 1;
- 2. $f(n) = O(c^n)$ if c > 1;
- 3. f(n) = O(1) if c < 1.

Answer.

1. Trivial and omitted. 2. $f(n) = \frac{c^{n+1}-1}{c-1}$. It is easy to verify that $f(n) \le c^n$ for all $n \ge 1$. 3. $f(n) = \frac{1-c^{n+1}}{1-c} \le \frac{1}{1-c} = O(1)$.

Problem 2. (30%) Suppose that you are given *n* distinct integers in an array *A*. All the integers are (i) in the range $[1, 10n^2]$ and (ii) multiples of *n*. Describe an algorithm to sort *A* in O(n) time.

Answer. First, decrease A[i] by n for each $i \in [1, n]$. This takes O(n) time. After this, all the integers A are in the range [1, 10n]. Then, perform counting sort on A in O(U + n) = O(10n + n) = O(n) time, where U is the size of the range (which is 10n). Finally, increase A[i] by a factor of n for each $i \in [1, n]$ in O(n) time. The array A at this time is the sorted order.