CSCI2100/ESTR2102: Midterm - Paper 1

Hand-write all your solutions on paper. Take a picture of the paper together with your CUHK student ID. Upload the picture to Blackboard or email it to the instructor at taoyf@cse.cuhk.edu.hk. Your must do so within 15 minutes after the quiz has started.

Problem 1. (30\%) Define $f(n)=1+c+c^{2}+c^{3}+\ldots+c^{n}$ where c is a positive real number. Prove:

1. $f(n)=O(n)$ if $c=1$;
2. $f(n)=O\left(c^{n}\right)$ if $c>1$;
3. $f(n)=O(1)$ if $c<1$.

Answer.

1. Trivial and omitted.
2. $f(n)=\frac{c^{n+1}-1}{c-1}$. It is easy to verify that $f(n) \leq c^{n}$ for all $n \geq 1$.
3. $f(n)=\frac{1-c^{n+1}}{1-c} \leq \frac{1}{1-c}=O(1)$.

Problem 2. (30\%) Suppose that you are given n distinct integers in an array A. All the integers are (i) in the range $\left[1,10 n^{2}\right]$ and (ii) multiples of n. Describe an algorithm to sort A in $O(n)$ time.

Answer. First, decrease $A[i]$ by n for each $i \in[1, n]$. This takes $O(n)$ time. After this, all the integers A are in the range $[1,10 n]$. Then, perform counting sort on A in $O(U+n)=O(10 n+n)=O(n)$ time, where U is the size of the range (which is $10 n$). Finally, increase $A[i]$ by a factor of n for each $i \in[1, n]$ in $O(n)$ time. The array A at this time is the sorted order.

