Recursion (the Beginning)

Yufei Tao
Department of Computer Science and Engineering Chinese University of Hong Kong

This lecture will introduce a technique called recursion for designing algorithms. Its principle is:

When dealing with a subproblem (same problem but with a smaller input), consider it solved.

We will apply the technique to settle several problems in this course. Today, we will see two examples. In the first, we will re-discover binary search; in the second, we will design our first sorting algorithm.

Array

An array of length n is a sequence of n elements such that

- they are stored consecutively in memory (i.e., the first element is immediately followed by the second, and then by the third, and so on);
- every element occupies the same number of memory cells.

With the concept of array, we now redefine the dictionary search problem:

The Dictionary Search Problem (Redefined)
Problem Input:
A set S of n integers has been arranged in ascending order in an array of length n. You are given the value of n and another integer v inside the CPU .

Goal:
Design an algorithm to determine whether v exists in S.

Binary Search (Re-discovered)

1. Compare v to the middle element e of the array. If $v=e$, return "yes" and done.
2. Otherwise:
2.1 If $v<e$, we have a subproblem: check if v is in the portion of the array before e;
2.2 If $v>e$, we have a subproblem: check if v is in the portion of the array after e.

Considering the subproblem solved, we finish the algorithm.
Think: why does it work?

Analysis of Binary Search

Recursion allows us to analyze the running time in an elegant manner.
Define $f(n)$ to be the maximum running time of binary search on n elements. For $n=1$, clearly:

$$
f(1)=O(1)
$$

For $n>1$:

$$
f(n) \leq O(1)+f(\lfloor n / 2\rfloor)
$$

Analysis of Binary Search

So it remains to solve the recurrence (c_{1}, c_{2} are constants whose values we do not care):

$$
\begin{aligned}
& f(1)=c_{1} \\
& f(n) \leq c_{2}+f(\lfloor n / 2\rfloor)
\end{aligned}
$$

Suppose, for now, that n is a power of 2 . An easy way of doing so is the expansion method, which simply expands $f(n)$ all the way down:

$$
\begin{aligned}
f(n) & \leq c_{2}+f(n / 2) \\
& \leq c_{2}+c_{2}+f\left(n / 2^{2}\right) \\
& \leq c_{2}+c_{2}+c_{2}+f\left(n / 2^{3}\right) \\
& \leq \underbrace{c_{2}+\ldots+c_{2}}_{\log _{2} n \text { of them }}+f(1) \\
& =c_{2} \cdot \log _{2} n+c_{1}=O(\log n) .
\end{aligned}
$$

Analysis of Binary Search

We can deal with general n (not necessarily a power of 2) using a rounding approach. Let n^{\prime} be the least power of 2 that is larger than n. It thus holds that $n^{\prime}<2 n$ (otherwise, n^{\prime} is not the least).

We then have:

$$
\begin{aligned}
f(n) & \leq f\left(n^{\prime}\right) \\
& \leq c_{2} \cdot \log _{2} n^{\prime}+c_{1}(\text { proved earlier }) \\
& <c_{2} \cdot \log _{2}(2 n)+c_{1} \\
& =c_{2}\left(1+\log _{2} n\right)+c_{1} \\
& =c_{2} \log _{2} n+c_{1}+c_{2}=O(\log n)
\end{aligned}
$$

Next, we switch our attention to the sorting problem, which is a classical problem in computer science, and is worth several lectures' discussion.

The Sorting Problem
Problem Input:
A set S of n integers is given in an array of length n. The value of n is inside the CPU (i.e., in a register).

Goal:
Produce an array that stores the elements of S in ascending order.

Example

Input:

Output:

Selection Sort

1. Find the largest integer $e_{\max }$ in S.
2. Swap $e_{\max }$ with the last (i.e., n-th) element of the array (after which $e_{\max }$ is at the end of the array).
3. We now have a subproblem: sort the first $n-1$ elements.

Let us consider that the subproblem has been solved. Now, the entire array is in ascending order. We thus finish the algorithm.

Example

Input:

After Step 2:

Analysis of Selection Sort

Let $f(n)$ be the maximum running time of selection sort when the problem size is n. We know:

$$
f(1)=O(1)
$$

For $n \geq 2$, we have:

$$
f(n) \leq O(n)+f(n-1)
$$

where the term $O(n)$ captures the cost of Steps 1 and 2 , and $f(n-1)$ is the cost of Step 3.

Analysis of Selection Sort

So it remains to solve the recurrence (c_{1}, c_{2} are constants):

$$
\begin{aligned}
& f(1)=c_{1} \\
& f(n) \leq c_{2} n+f(n-1)
\end{aligned}
$$

Using the expansion method, we get:

$$
\begin{aligned}
f(n) & \leq c_{2} n+f(n-1) \\
& \leq c_{2} n+c_{2}(n-1)+f(n-2) \\
& \leq c_{2} n+c_{2}(n-1)+c_{2}(n-2)+f(n-3) \\
& \leq c_{2} n+c_{2}(n-1)+\ldots+c_{2} \cdot 2+f(1) \\
& \leq c_{2} n(n+1) / 2+c_{1} \\
& =O\left(n^{2}\right) .
\end{aligned}
$$

We now conclude that selection sort runs in $O\left(n^{2}\right)$ worst-case time.

