Quick Sort

Yufei Tao
Department of Computer Science and Engineering Chinese University of Hong Kong

Today, we will discuss another sorting algorithm named quick sort. It is a randomized algorithm that runs in $O\left(n^{2}\right)$ time in the worst case but $O(n \log n)$ time in expectation.

Recall:
The Sorting Problem
Problem Input:
A set S of n integers is given in an array A of length n.
Goal:
Produce an array that stores the elements of S in ascending order.

Quick Sort

(1) Pick an integer p in A uniformly at random, which is called the pivot.
(2) Re-arrange the integers in an array A^{\prime} such that

- all the integers smaller than p are before p in A^{\prime};
- all the integers larger than p are after p in A^{\prime}.
(3) Sort the part of A^{\prime} before p recursively (a subproblem).
(4) Sort the part of A^{\prime} after p recursively (a subproblem).

Example

After Step 1 (suppose that 26 was randomly picked as the pivot):

After Step 2:

After Steps 3 and 4:

Analysis of Quick Sort

Quick sort is not attractive in the worst case: its worst case time is $O\left(n^{2}\right)$ (why?). However, quick sort is fast in expectation: we will prove that its expected time is $O(n \log n)$. Remember: this holds on every input array A.

The rest of the slides will not be tested for CSCI2100.

Analysis of Quick Sort

First, convince yourself that it suffices to analyze the number X of comparisons. The running time is bounded by $O(n+X)$.

Next, we will prove that $\boldsymbol{E}[X]=O(n \log n)$.

Analysis of Quick Sort

Denote by e_{i} the i-th smallest integer in S. Consider e_{i}, e_{j} for any i, j such that $i \neq j$.

What is the probability that quick sort compares e_{i} and e_{j} ?
This question, which seems to be difficult at first glance, has a surprisingly simple answer. Let us observe:

- Every element will be selected as a pivot exactly once.
- e_{i} and e_{j} are not compared, if any element between them gets selected as a pivot before e_{i} and e_{j}.

For example, suppose that $i=7$ and $j=12$. If e_{9} is the pivot, then e_{i} and e_{j} will be separated by e_{9} (think: why?) and will not be compared in the rest of the algorithm.

Analysis of Quick Sort

Therefore, e_{i} and e_{j} are compared if and only if either one is the first among $e_{i}, e_{i+1}, \ldots, e_{j}$ picked as a pivot.

The probability is $2 /(j-i+1)$.

Analysis of Quick Sort

Define random variable $X_{i j}$ to be 1 , if e_{i} and e_{j} are compared. Otherwise, $X_{i j}=0$. We thus have $\operatorname{Pr}\left[X_{i j}=1\right]=2 /(j-i+1)$. That is, $E\left[X_{i j}\right]=2 /(j-i+1)$.
Clearly, $X=\sum_{i, j} X_{i j}$. Hence:

$$
\begin{aligned}
\boldsymbol{E}[X] & =\sum_{i, j: i<j} E\left[X_{i j}\right]=\sum_{i, j: i<j} \frac{2}{j-i+1} \\
& =2 \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{1}{j-i+1} \\
& =2 \sum_{i=1}^{n-1} O(\log (n-i+1)) \\
& =2 \sum_{i=1}^{n-1} O(\log n)=O(n \log n) .
\end{aligned}
$$

Analysis of Quick Sort

The above analysis used the following fact:

$$
1+1 / 2+1 / 3+1 / 4+\ldots+1 / n=O(\log n) .
$$

The left-hand side is called the harmonic series.

