Merge Sort

Yufei Tao
Department of Computer Science and Engineering Chinese University of Hong Kong

In this lecture, we will design the merge sort which sorts n elements in $O(n \log n)$ time. The algorithm illustrates a divide and conquer technique, which is a form of recursion especially useful in computer science.

Recall:

The Sorting Problem
Problem Input:
A set S of n integers is given in an array of length n. The value of n is inside the CPU (i.e., in a register).

Goal:
Produce an array to store the integers of S in ascending order.

Merge Sort (Divide and Conquer)
(1) Sort the first half of the array S (i.e., a subproblem of size $n / 2$).
(2) Sort the second half of the array S (i.e., a subproblem of size $n / 2$).
(3) Consider both subproblems solved and merge the two halves of the array into the final sorted sequence (details later).

Example

Input:

38	28	88	17	26	41	72	83	69	47	12	68	5	52	35	9														

First step, sort the first half of the array by recursion.

Example

Second step, sort the second half of the array by recursion:

Third step, merge the two halves.

5	9	12	17	26	28	35	38	41	47	52	68	69	72	83	88														

We are looking at the following merging problem.
There are two arrays-denoted as A_{1} and A_{2}-of integers. Each array has (at most) $n / 2$ integers sorted in ascending order. The goal is to produce a sorted array A containing all the integers in A_{1} and A_{2}.

The following shows an example of the input:

Merging

At the beginning, set $i=j=1$.
Repeat until $i>n / 2$ or $j>n / 2$:
(1) If $A_{1}[i]$ (i.e., the i-th integer of A_{1}) is smaller than $A_{2}[j]$, append $A_{1}[i]$ to A, and increase i by 1 .
(2) Otherwise, append $A_{2}[j]$ to A, and increase j by 1 .

Example

At the beginning of merging:

Appending 5 to A :

Example

Appending 9 to A :

Appending 12 to A :

Example

Appending 17 to A :

And so on.

Running Time of Merge Sort

Let $f(n)$ denote the worst-case running time of merge sort when executed on an array of size n.

For $n=1$, we have:

$$
f(n)=O(1)
$$

For $n \geq 1$:

$$
f(n) \leq 2 f(\lceil n / 2\rceil)+O(n)
$$

where the term $2 f(\lceil n / 2\rceil)$ is because the recursion sorts two arrays each of size at most $\lceil n / 2\rceil$, and the term $O(n)$ is the time of merging.

Running Time of Merge Sort

So it remains to solve the following recurrence:

$$
\begin{aligned}
f(1) & \leq c_{1} \\
f(n) & \leq 2 f(n / 2)+c_{2} n
\end{aligned}
$$

where c_{1}, c_{2} are constants (whose values we do not care). If n is a power of 2 , using the expansion method, we have:

$$
\begin{aligned}
f(n) & \leq 2 f(n / 2)+c_{2} n \\
& \leq 2\left(2 f(n / 4)+c_{2} n / 2\right)+c_{2} n=4 f(n / 4)+2 c_{2} n \\
& \leq 4\left(2 f(n / 8)+c_{2} n / 4\right)+2 c_{2} n=8 f(n / 8)+3 c_{2} n \\
& \ldots \\
& \leq 2^{i} f\left(n / 2^{i}\right)+i \cdot c_{2} n \\
& \cdots \\
\left(h=\log _{2} n\right) & \leq 2^{h} f(1)+h \cdot c_{2} n \\
& \leq n \cdot c_{1}+c_{2} n \cdot \log _{2} n=O(n \log n) .
\end{aligned}
$$

Running Time of Merge Sort

How to remove the assumption that n is a power of 2? Hint: The rounding approach discussed in a previous lecture.

