Merge Sort

Yufei Tao

Department of Computer Science and Engineering Chinese University of Hong Kong

1/14

In this lecture, we will design the merge sort which sorts n elements in $O(n \log n)$ time. The algorithm illustrates a divide and conquer technique, which is a form of recursion especially useful in computer science.

2/14

Recall:

The Sorting Problem

Problem Input:

A set S of n integers is given in an array of length n. The value of n is inside the CPU (i.e., in a register).

Goal:

Produce an array to store the integers of S in ascending order.

Merge Sort (Divide and Conquer)

- **①** Sort the first half of the array S (i.e., a **subproblem** of size n/2).
- ② Sort the second half of the array S (i.e., a subproblem of size n/2).
- 3 Consider both subproblems solved and merge the two halves of the array into the final sorted sequence (details later).

4/14

Input:

First step, sort the first half of the array by recursion.

Second step, sort the second half of the array by recursion:

Third step, merge the two halves.

We are looking at the following merging problem.

There are two arrays—denoted as A_1 and A_2 —of integers. Each array has (at most) n/2 integers sorted in ascending order. The goal is to produce a sorted array A containing all the integers in A_1 and A_2 .

The following shows an example of the input:

Merging

At the beginning, set i = j = 1.

Repeat until i > n/2 or j > n/2:

- If $A_1[i]$ (i.e., the *i*-th integer of A_1) is smaller than $A_2[j]$, append $A_1[i]$ to A, and increase i by 1.
- ② Otherwise, append $A_2[j]$ to A, and increase j by 1.

8/14

At the beginning of merging:

Appending 5 to *A*:

Appending 9 to A:

Appending 12 to A:

Appending 17 to A:

And so on.

Yufei Tao

Running Time of Merge Sort

Let f(n) denote the worst-case running time of merge sort when executed on an array of size n.

For n = 1, we have:

$$f(n) = O(1)$$

For n > 1:

$$f(n) \leq 2f(\lceil n/2 \rceil) + O(n)$$

where the term $2f(\lceil n/2 \rceil)$ is because the recursion sorts two arrays each of size at most $\lceil n/2 \rceil$, and the term O(n) is the time of merging.

12/14

Running Time of Merge Sort

So it remains to solve the following recurrence:

$$f(1) \leq c_1$$

$$f(n) \leq 2f(n/2) + c_2 n$$

where c_1, c_2 are constants (whose values we do not care). If n is a power of 2, using the expansion method, we have:

$$f(n) \leq 2f(n/2) + c_2n$$

$$\leq 2(2f(n/4) + c_2n/2) + c_2n = 4f(n/4) + 2c_2n$$

$$\leq 4(2f(n/8) + c_2n/4) + 2c_2n = 8f(n/8) + 3c_2n$$
...
$$\leq 2^i f(n/2^i) + i \cdot c_2n$$
...
$$(h = \log_2 n) \leq 2^h f(1) + h \cdot c_2n$$

$$\leq n \cdot c_1 + c_2n \cdot \log_2 n = O(n \log n).$$

Running Time of Merge Sort

How to remove the assumption that n is a power of 2? Hint: The rounding approach discussed in a previous lecture.

14/14