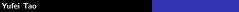
Hashing

Yufei Tao

Department of Computer Science and Engineering Chinese University of Hong Kong



イロト イボト イヨト イヨト

э

Hashing

This lecture will revisit the **dictionary search** problem, where we want to locate an integer q in a set of size n or declare the absence of q. Binary search solves the problem in $O(\log n)$ time (assuming a sorted array on the n integers). We will reduce the cost to O(1) in expectation with a structure called the **hash table**.

The Dictionary Search Problem (Redefined)

S is a set of n integers. We want to preprocess S into a data structure to answer the following queries efficiently:

• (dictionary search) query: given an integer q, decide whether $q \in S$.

We will measure a data structure's performance by:

- Space consumption: the number of memory cells occupied.
- Query cost: query time.
- Preprocessing cost: time of building the structure.

Dictionary Search — Solution Based on Binary Search

We can solve the problem by storing S in a sorted array of length n and answering a query with binary search. This ensures:

- Space consumption: O(n).
- Query cost: $O(\log n)$.
- Preprocessing cost: $O(n \log n)$.

・ロト ・ 一 マ ・ コ ト ・ 日 ト

Dictionary Search — This Lecture (Hash Table)

We will improve the previous solution in expectation:

- Space consumption: O(n).
- Query cost: $O(\log n) \Rightarrow O(1)$ in expectation.
- Preprocessing cost: $O(n \log n) \Rightarrow O(n)$.

・ロト ・同ト ・ヨト ・ヨト

э

Hashing

Main idea: divide *S* into small disjoint subsets such that a query only needs to search one subset.

We assume that every integer is in [1, U]. Denote by [m] the set of integers from 1 to m.

A hash function h is a function from [U] to [m]. Namely, given any integer k, h(k) returns an integer in [m].

The value h(k) is called the **hash value** of k.

Yufei

Hashing

Hash Table — Preprocessing

First, choose an integer m > 0, and a hash function h from [U] to [m].

Then, preprocess S as follows:

- Create an array H of length m.
- ② For each *i* ∈ [1, *m*], create an empty linked list *L_i*. Keep the head and tail pointers of *L_i* in *H*[*i*].
- **3** For each integer $\mathbf{x} \in S$:
 - Calculate the hash value h(x).
 - Insert x into $L_{h(x)}$.

Space consumption: O(n + m). Preprocessing time: O(n + m).

Yufei Tao	Hashing

ヘロト ヘ団ト ヘヨト ヘヨト

Hash Table — Querying

We answer a query with value q as follows:

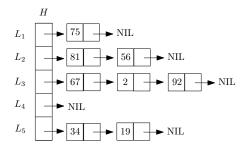
- Calculate the hash value h(q).
- Scan the whole $L_{h(q)}$. If q is not found, answer "no"; otherwise, answer "yes".

Query time: $O(|L_{h(v)}|)$, where $|L_{h(v)}|$ is the number of elements in $L_{h(v)}$.

► < Ξ ► <</p>

Example

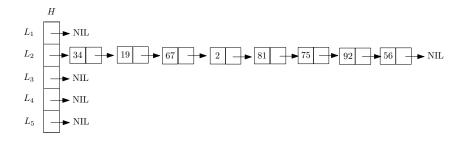
Let $S = \{34, 19, 67, 2, 81, 75, 92, 56\}$. Suppose that we choose m = 5 and $h(k) = 1 + (k \mod m)$.



To answer a query with q = 57, we scan all the elements in L_3 and answer "no". For this hash function, the maximum query time is the cost of scanning a linked list of 3 elements.

Yufei Tao	Hashing

Let $S = \{34, 19, 67, 2, 81, 75, 92, 56\}$. Suppose that we choose m = 5, and h(k) = 2.



For this hash function, the maximum query time is the cost of scanning a linked list of 8 elements (i.e., the worst possible).

Yufei Tao	Hashing

イロト イポト イヨト イヨト

-

A good hash function should create linked lists of roughly the same size.

Next we will introduce a technique that can choose a good hash function to guarantee O(1) expected query time.

A (1) < (1) < (1) </p>

Let \mathcal{H} be a family of hash functions from [U] to [m]. \mathcal{H} is universal if the following holds:

Let k_1, k_2 be two distinct integers in [U]. By picking a function $h \in \mathcal{H}$ uniformly at random, we guarantee that

$$Pr[h(k_1) = h(k_2)] \leq 1/m.$$

We will prove that universality ensures O(1) expected query time. Then, we will describe a way to obtain such a good hash function.

Analysis of Query Time under Universality

Yufei Tao

We focus on the case where q does not exist in S (the case where it does is similar). Recall that our algorithm probes all the elements in the linked list $L_{h(q)}$. The query cost is therefore $O(|L_{h(q)}|)$.

Define random variable X_i $(i \in [1, n])$ to be 1 if the *i*-th element *e* of *S* has the same hash value as *q* (i.e., h(e) = h(q)), and 0 otherwise. Thus:

$$|L_{h(q)}| = \sum_{i=1}^{n} X_i$$

13/27

Hashing

Analysis of Query Time under Universality

By universality, $Pr[X_i = 1] \le 1/m$, meaning that

$$\begin{aligned} \boldsymbol{E}[X_i] &= 1 \cdot \boldsymbol{Pr}[X_i = 1] + 0 \cdot \boldsymbol{Pr}[X_i = 0] \\ &\leq 1/m. \end{aligned}$$

Hence:

$$\boldsymbol{E}[|L_{h(q)}|] = \sum_{i=1}^{n} \boldsymbol{E}[X_i] \leq n/m.$$

By choosing $m = \Theta(n)$, we have n/m = O(1).

< ロ > < 同 > < 回 > < 回 >

-

Hashing

Designing a Universal Function

We now construct a universal family \mathcal{H} of hash functions from [U] to [m].

- Pick a prime number p such that $p \ge m$ and $p \ge U$.
- For every $\pmb{lpha} \in \{1,2,...,p-1\}$ and every $\pmb{eta} \in \{0,1,...,p-1\}$, define:

$$h_{\alpha,\beta}(k) = 1 + (((\alpha k + \beta) \mod p) \mod m).$$

• This defines p(p-1) hash functions, which constitute our \mathcal{H} .

The proof of universality can be found in the appendix (not required for CSCI2100)

- 4 周 ト 4 ヨ ト 4 ヨ ト

Existence of the Prime Number

Is it always possible to choose a desired prime number p?

Recall that the RAM model is defined with a word length w, namely, the number of bits in a word. Hence, $U \leq 2^w - 1$.

Number theory shows that there is at least one prime number between x and 2x. Hence, one can prepare in advance such a prime number p in the range $[2^w, 2^{w+1}]$ and use this p to construct a universal hash family.

・ 同 ト ・ ヨ ト ・ ヨ ト

We have shown that, for any set S of n integers, it is always possible to construct a hash table with the following guarantees on the dictionary search problem:

- Space O(n).
- Preprocessing time O(n).
- Query time O(1) in expectation.

A (1) < (1) < (1) </p>

- E

Appendix: Proof of Universality

(not required for CSCI2100)

< ロ > < 同 > < 回 > < 回 >

э

The Prime Ring

Denote by \mathbb{Z}_p the set of integers $\{0, 1, ..., p-1\}$. \mathbb{Z}_p forms a **commutative ring** under "+" and ":" (both defined using modulo p). This means:

- \mathbb{Z}_p is closed under + and \cdot .
- + satisfies commutativity and associativity.

• $a + b = b + a \pmod{p}$ and $a + b + c = a + (b + c) \pmod{p}$

- + has a zero element, that is, $0 + a = a \pmod{p}$.
- Every element a has an additive inverse -a, that is, a + (-a) = 0 (mod p).
- satisfies commutativity and associativity.

• $a \cdot b = b \cdot a \pmod{p}$ and $a \cdot b \cdot c = a \cdot (b \cdot c) \pmod{p}$

- modulo p has a **one element**, that is, $1 \cdot a = a \pmod{a}$.
- \bullet + and \cdot satisfy distributivity.

•
$$a \cdot (b+c) = a \cdot b + a \cdot c \pmod{p}$$

• $(b+c) \cdot a = b \cdot a + c \cdot a \pmod{p}$

19/27

く 伺 と く き と く き とう

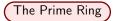
The Prime Ring

The ring \mathbb{Z}_p has several crucial properties. Let us start with:

Lemma: Let *a* be a non-zero element in \mathbb{Z}_p . Then, $a \cdot j \neq a \cdot k$ (mod *p*) for any $j, k \in \mathbb{Z}_p$ with $j \neq k$.

Proof: Suppose without loss of generality j > k. Assume $a \cdot j = a \cdot k \pmod{p}$, then $a \cdot (j - k) = 0 \pmod{p}$. This means that $a \cdot (j - k)$ must be a multiple of p. Since p is prime, either a or j - k must be a multiple of p. This is impossible because a and j - k are non-zero elements in \mathbb{Z}_p .

The lemma implies that $a \cdot 0$, $a \cdot 1$, ..., $a \cdot (p-1)$ must take unique values in $\{0, 1, ..., p-1\}$.



The previous lemma implies:

Corollary: Every non-zero element *a* has a unique multiplicative inverse a^{-1} , namely, $a \cdot a^{-1} = 1 \pmod{p}$.

In other words, \mathbb{Z}_p is a **division ring**.

B 1 4 B 1

The next property then follows:

Lemma: Every equation $a \cdot x + b = c \pmod{p}$ where a, b, c are in \mathbb{Z}_p and $a \neq 0$ has a unique solution in \mathbb{Z}_p .

Proof:

$$a \cdot x = c - b \pmod{p}$$

 $\Leftrightarrow x = a^{-1} \cdot (c - b) \pmod{p}$

Yufei Tao	Hashing
-----------	---------

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Next, we will prove that the hash family \mathcal{H} we constructed in Slide 15 is universal. As before, let k_1 and k_2 be distinct integers in [U].

Fact 1: Let $g_{\alpha,\beta}(k_1) = (\alpha \cdot k_1 + \beta) \mod p$ $g_{\alpha,\beta}(k_2) = (\alpha \cdot k_2 + \beta) \mod p$ We must have: $g_{\alpha,\beta}(k_1) \neq g_{\alpha,\beta}(k_2)$.

Proof: Otherwise, it must hold that

Yufei Tao

$$\begin{array}{rcl} \alpha \cdot k_1 + \beta & = & \alpha \cdot k_2 + \beta \pmod{p} \\ \Rightarrow & \alpha \cdot (k_1 - k_2) & = & 0 \pmod{p} \end{array}$$

which is not possible.

How many different choices are there for the pair $(g(k_1), g(k_2))$? The answer is at most p(p-1) according to Fact 1: there are p^2 possible pairs in $\mathbb{Z}_p \times \mathbb{Z}_p$ but we need to exclude the p pairs where the two values are the same.

Recall that \mathcal{H} has p(p-1) functions.

Next, we will prove a one-to-one mapping between the possible choices of $(g(k_1), g(k_2))$ and the hash functions in \mathcal{H} .

- 同 ト - ヨ ト - ヨ ト

Fact 2: Fix any two $x, y \in \mathbb{Z}_p$ such that $x \neq y$. There is a unique pair (α, β) — with $\alpha \in \{1, 2, ..., p-1\}$ and $\beta \in \{0, 1, ..., p-1\}$ — that makes $g_{\alpha,\beta}(k_1) = x$ and $g_{\alpha,\beta}(k_2) = y$.

Proof: Suppose that *h* is determined by α, β selected as explained in Slide 15. Thus:

Hence:

$$\begin{array}{rcl} \alpha \cdot (k_1 - k_2) &=& x - y \pmod{p} \\ \Rightarrow & \alpha &=& (k_1 - k_2)^{-1} \cdot (x - y) \pmod{p} \\ \Rightarrow & \beta &=& x - (k_1 - k_2)^{-1} \cdot (x - y) \cdot k_1 \pmod{p} \end{array}$$

Let *P* be the set of pairs (x, y) such that $x, y \in \mathbb{Z}_p$ and $x \neq y$.

By choosing α, β randomly in their respective ranges, we set $(g_{\alpha,\beta}(k_1), g_{\alpha,\beta}(k_2))$ to a pair $(x, y) \in P$ chosen uniformly at random.

Notice that $h(k_1) = h(k_2)$ if and only if $g_{\alpha,\beta}(k_1) = g_{\alpha,\beta}(k_2) \pmod{m}$. So now the question boils down to: how many pairs (x, y) in P satisfy $x = y \pmod{m}$?

How many pairs (x, y) in P satisfy $x = y \pmod{m}$?

- For x = 0, y can take m, 2m, 3m, The number of such y's is no more than [p/m] − 1 ≤ (p − 1)/m.
- For x = 1, y can take m + 1, 2m + 1, 3m + 1, ... The number of such y's is no more than $\lceil p/m \rceil 1 \le (p-1)/m$.

• ...

Hence, the number of such pairs is no more than p(p-1)/m = |P|/m.

Now we conclude that the probability of $h(k_1) = h(k_2)$ is at most 1/m.

イロト イポト イヨト イヨト