Basic Concepts of Graphs

Yufei Tao
Department of Computer Science and Engineering
Chinese University of Hong Kong

Undirected Graphs

An undirected graph is a pair of (V, E) where:

- V is a set of elements, each of which called a node.
- E is a set of unordered pairs $\{u, v\}$ where u and v are nodes.

A node is also called a vertex. Each element $\{u, v\} \in E$ is also called an edge. Node u is a neighbor of v; the two vertices are adjacent to each other.

Example

This is an undirected graph where there are 5 vertices $v_{1}, v_{2}, \ldots, v_{5}$, and 5 edges $e_{1}, e_{2}, \ldots, e_{5}$.

Directed Graphs

An directed graph is a pair of (V, E) where:

- V is a set of elements, each of which called a node.
- E is a set of pairs (u, v) where u and v are nodes in V.

A node is also called a vertex. Each element $\{u, v\} \in E$ is also called an edge.

Each element $(u, v) \in E$ is a directed edge. More specifically, it is an outgoing edge of u and an incoming edge of v. Accordingly, v is an out-neighbor of u and u is an in-neighbor of v.

Example

This is a directed graph (V, E) where there are 5 vertices $v_{1}, v_{2}, \ldots, v_{5}$, and 7 edges $e_{1}, e_{2}, \ldots, e_{7}$. Edge e_{6}, for instance, is an outgoing edge of v_{5} and an incoming edge of v_{4}.

- In an undirected graph, the degree of a vertex u is the number of edges of u.
- In a directed graph, the out-degree of a vertex u is the number outgoing edges of u, and its in-degree is the number of its incoming edges.

Example

In the left graph, the degree of v_{5} is 2 . In the right graph, the out-degree of v_{3} is 2 and its in-degree is 1 .

Next, we discuss two common ways to store a graph: adjacency list and adjacency matrix. In both cases, we represent each vertex in V using a unique id in $1,2, \ldots,|V|$.

Adjacency List - Undirected Graphs

Each vertex $u \in V$ is associated with a linked list that enumerates all the vertices adjacent to u.

Example

Space $=O(|V|+|E|)$.

Adjacency List - Directed Graphs

Each vertex $u \in V$ is associated with a linked list that enumerates all the out-neighbors of u.

Example

$$
\begin{aligned}
& v_{1} \rightarrow \mid v_{4} \rightarrow v_{2} \rightarrow \stackrel{1}{\equiv} \\
& v_{2} \rightarrow \frac{1}{\equiv} \\
& v_{3} \rightarrow v_{1} \cdot v_{3} \rightarrow \stackrel{1}{\equiv} \\
& v_{4} \rightarrow v_{5} \bullet \stackrel{1}{\equiv} \\
& v_{5} \rightarrow v_{4} \rightarrow v_{1} \rightarrow \perp
\end{aligned}
$$

Space $=O(|V|+|E|)$.

Adjacency Matrix - Undirected Graphs

A $|V| \times|V|$ matrix A where $A[u, v]=1$ if $(u, v) \in E$, or 0 otherwise.

Example

$e_{1} e^{e_{3}} e_{5}$| v_{4} | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| v_{1} | 0 | v_{1} | v_{2} | v_{3} | v_{4} |
| v_{2} | 1 | 1 | 1 | 1 | |
| v_{3} | 1 | 0 | 0 | 0 | 0 |
| v_{4} | 1 | 0 | 0 | 0 | 1 |
| v_{5} | 1 | 0 | 0 | 1 | 0 |

- A must be symmetric.
- Space $=O\left(|V|^{2}\right)$.

Think: How to store A so that, for any vertices $u, v \in V$, we can find out if they have an edge in constant time?

Adjacency Matrix - Directed Graphs

Defined in the same way as in the undirected case.

Example

	v_{1}	v_{2}	v_{3}	v_{4}	v_{5}
v_{1}	0	1	0	1	0
v_{2}	0	0	0	0	0
v_{3}	1	0	1	0	0
v_{4}	0	0	0	0	1
v_{5}	1	0	0	1	0

- A may not be symmetric.
- Space $=O\left(|V|^{2}\right)$.

