
1/12

Dynamic Arrays and Amortized Analysis

Yufei Tao

Department of Computer Science and Engineering
Chinese University of Hong Kong

Yufei Tao Dynamic Arrays and Amortized Analysis



2/12

To create an array, you need to specify a size, i.e., how many elements
you can store in the array. Increasing the size is expensive because it
means creating a new array and moving all the elements over.

This lecture will discuss clever tricks to change the array size efficiently!

Our discussion introduces the method of amortized analysis.

Yufei Tao Dynamic Arrays and Amortized Analysis



3/12

Dynamic Array Problem

Let S be a collection of integers (not necessarily distinct). S is empty in
the beginning. Integers are then added to S one by one with insertions.

Let n be the number of elements in S currently. We want to maintain an
array A satisfying:

1 A has length O(n).

2 For each i ∈ [1, n], A[i ] = x if x is the i-th integer added to S .

The above requirements need to be satisfied after every insertion.

Yufei Tao Dynamic Arrays and Amortized Analysis



4/12

Naive Algorithm

Perform insert(e) (which inserts an integer e to S) as follows:

If n = 0, set n to 1 and initialize A to have length 1 to store e.

Otherwise (n ≥ 1):

Increase n by 1.
Initialize an array A′ of length n.
Copy all the n − 1 elements of A to A′.
Set A′[n] = e.
Destroy A and replace it with A′.

This algorithm spends O(n) time on the n-th insertion. Altogether,
it takes O(n2) time to do n insertions.

Yufei Tao Dynamic Arrays and Amortized Analysis



5/12

We will reduce the time of inserting n elements dramatically to
O(n). Our array A may have a length up to 2n.

Yufei Tao Dynamic Arrays and Amortized Analysis



6/12

A Better Algorithm

A is full if its cells are all filled.

Perform insert(e) as follows:

If n = 0, set n to 1 and initialize A of length 2 to store just e itself.

Otherwise (i.e., n ≥ 1), append e to A and increase n by 1. If A is
full:

Initialize an array A′ of length 2n.
Copy all the elements of A to A′.
Destroy A and replace it with A′.

Yufei Tao Dynamic Arrays and Amortized Analysis



7/12

Example

n = 1

n = 2

n = 3

n = 4

n = 5

...

n = 8

Yufei Tao Dynamic Arrays and Amortized Analysis



8/12

Analysis

Cost of inserting the n-th element:

if A is not full after the insertion, O(1);

otherwise, O(n), i.e., the time of expanding A.

Yufei Tao Dynamic Arrays and Amortized Analysis



9/12

Analysis

Array expansions are infrequent:

Initially, size 2.

1st expansion: size from 2 to 4.

2nd expansion: from 4 to 8.

...

i-th expansion: from 2i to 2i+1.

After n insertions, the size of A is at most 2n. Hence:

2i+1 ≤ 2n ⇒ i ≤ log2 n

that is, at most log2 n expansions.

Yufei Tao Dynamic Arrays and Amortized Analysis



10/12

Analysis

The total cost of n insertions is bounded by:(
n∑

i=1

O(1)

)
+

log2 n∑
i=1

O(2i ) (1)

where

the first term captures the O(1) time compulsory for each insertion;

the second term captures all the expansion cost.

(1) evaluates to O(n).

Yufei Tao Dynamic Arrays and Amortized Analysis



11/12

We have shown that the total cost of n insertions is O(n). In other

words, each insertion entails O(1) cost “on average”. This does not

mean that every insertion can be performed in O(1) time. The cost of

some insertions can reach Ω(n).

Yufei Tao Dynamic Arrays and Amortized Analysis



12/12

In general, if a data structure can process any n operations in f (n)

time, we say that it guarantees an amortized cost of f (n)
n per

operation.

The dynamic array guarantees O(1) amortized cost per insertion.

Yufei Tao Dynamic Arrays and Amortized Analysis


