CSCI: Regular Exercise Set 2

Prepared by Yufei Tao

Problem 1. Prove $30 \sqrt{n}=O(\sqrt{n})$.
Solution. Set $c_{1}=30$ and $c_{2}=1$. The inequality $30 \sqrt{n} \leq c_{1} \sqrt{n}$ holds for all $n \geq c_{2}$. This completes the proof.

Problem 2. Prove $\sqrt{n}=O(n)$.
Solution. Set $c_{1}=1$ and $c_{2}=1$. The inequality $\sqrt{n} \leq c_{1} n$ holds for all $n \geq c_{2}$. This completes the proof.

Problem 3. Let $f(n), g(n)$, and $h(n)$ be functions of integer n. Prove: if $f(n)=O(g(n))$ and $g(n)=O(h(n))$, then $f(n)=O(h(n))$.

Solution. Since $f(n)=O(g(n))$, there exist constants c_{1}, c_{2} such that for all $n \geq c_{2}$, it holds that

$$
f(n) \leq c_{1} g(n)
$$

Similarly, since $g(n)=O(h(n))$, there exist constants $c_{1}^{\prime}, c_{2}^{\prime}$ such that for all $n \geq c_{2}^{\prime}$, it holds that

$$
g(n) \leq c_{1}^{\prime} h(n) .
$$

Set $c_{1}^{\prime \prime}=c_{1} c_{1}^{\prime}$ and $c_{2}^{\prime \prime}=\max \left\{c_{2}, c_{2}^{\prime}\right\}$. From the above, we know that for all $n \geq c_{2}^{\prime \prime}$, it holds that

$$
f(n) \leq c_{1} g(n) \leq c_{1} c_{1}^{\prime} h(n)=c_{1}^{\prime \prime} h(n)
$$

Therefore, $f(n)=O(h(n))$.
Problem 4. Prove $(2 n+2)^{3}=O\left(n^{3}\right)$.
Solution. Set $c_{1}=4^{3}$ and $c_{2}=1$. The inequality $(2 n+2)^{3} \leq c_{1} n^{3}$ holds for all $n \geq c_{2}$. This completes the proof.

Problem 5. Prove or disprove: $4^{n}=O\left(2^{n}\right)$.
Solution. Consider the ratio $4^{n} / 2^{n}$, which equals 2^{n}. The ratio clearly goes to ∞ when n tends to ∞. Therefore, the statement is incorrect.

Problem 6. Prove or disprove: $\frac{1}{n}=O(1)$.
Solution. Set $c_{1}=1$ and $c_{2}=1$. The inequality $1 / n \leq c_{1} \cdot 1$ holds for all $n \geq c_{2}$. This completes the proof.

Problem 7. Prove that if $k \log _{2} k=\Theta(n)$, then $k=\Theta(n / \log n)$.

Solution. Since $k \log _{2} k=O(n)$, there exist constants c_{1}, c_{2} such that $k \log _{2} k \leq c_{1} n$ for all $n \geq c_{2}$. On the other hand, $k \log _{2} k=\Omega(n)$ indicates the existence of constants $c_{1}^{\prime}, c_{2}^{\prime}$ such that $k \log _{2} k \geq c_{1}^{\prime} n$ for all $n \geq c_{2}^{\prime}$. Therefore, for all $n \geq \max \left\{c_{2}, c_{2}^{\prime}\right\}$, we have:

$$
\begin{equation*}
c_{1}^{\prime} n \leq k \log _{2} k \leq c_{1} n . \tag{1}
\end{equation*}
$$

Set $c_{2}^{\prime \prime}=\max \left\{c_{1}, c_{2}, c_{2}^{\prime}\right\}$.
When $n \geq \max \left\{c_{2}^{\prime \prime},\left(1 / c_{1}^{\prime}\right)^{2}\right\}$, we derive from (1):

$$
\begin{align*}
& \log _{2}\left(c_{1}^{\prime} n\right) \leq \log _{2}\left(k \log _{2} k\right) \leq \log _{2}\left(c_{1} n\right) \\
& \Rightarrow \log _{2} c_{1}^{\prime}+\log _{2} n \leq \log _{2} k+\log _{2} \log _{2} k \leq \log _{2} c_{1}+\log _{2} n \\
& \Rightarrow\left\{\begin{array}{l}
\log _{2} k \leq \log _{2} c_{1}+\log _{2} n \leq 2 \log _{2} n \quad\left(\text { using } n \geq c_{1}\right) \\
2 \log _{2} k \geq \log _{2} k+\log _{2} \log _{2} k \geq \log _{2} c_{1}^{\prime}+\log _{2} n \geq \frac{1}{2} \log _{2} n
\end{array}\right. \\
& \Rightarrow \frac{\log _{2} n}{4} \leq \log _{2} k \leq 2 \log _{2} n . \tag{2}
\end{align*}
$$

Combining (1) and (2) leads to

$$
\left\{\begin{array}{c}
k \leq c_{1} \frac{n}{\log _{2} k} \leq 4 c_{1} \frac{n}{\log _{2} n} \\
k \geq c_{1}^{\prime} \frac{n}{\log _{2} k} \geq \frac{c_{1}^{\prime}}{2} \frac{n}{\log _{2} n}
\end{array}\right.
$$

which means $k=\Theta(n / \log n)$.

