Linear Time Sorting in a Polynomial Domain [Notes for ESTR2102]

Yufei Tao
Department of Computer Science and Engineering Chinese University of Hong Kong

Recall that counting sort is able to sort n integers in the range from 1 to U in $O(n+U)$ time. The running time is expensive for large U. We will significantly improve this by describing how to sort in $O(n)$ time for any $U \leq n^{c}$, where c is a constant (e.g., 10).

The new algorithm is called radix sort.

Without loss of generality, we will consider that n is a power of 2 (why no generality is lost?). Hence, every integer can be represented by $c \log _{2} n$ bits (in binary form), which we denote as $b_{c} \log _{2} n b_{c} \log _{2} n-1 \ldots b_{2} b_{1}$, where b_{1} is the least significant bit.

For every integer $b_{c \log _{2} n} b_{c \log _{2} n-1} \ldots b_{2} b_{1}$, we divide the bits into c disjoint chunks, each of which contains $\log _{2} n$ bits:

- The first chunk contains the right most $\log _{2} n$ bits, namely, $b_{\log _{2} n} b_{\log _{2} n-1 \ldots b_{1}}$.
- The second chunk contains the next $\log _{2} n$ bits, namely, $b_{2} \log _{2} n b_{2} \log _{2} n-1 \ldots b_{\log _{2} n+1}$.
- ...
- The last chunk contains the left most $\log _{2} n$ bits, namely, $b_{c} \log _{2} n b_{c} \log _{2} n-1 \ldots b_{(c-1)} \log _{2} n+1$

For any integer $x=b_{c} \log _{2} n b_{c \log _{2} n-1} \ldots b_{2} b_{1}$, and any $i \in[1, c]$, we can obtain the i-th chunk of x as follows:

- Calculate $y=x \bmod n^{i}$. The binary form of y corresponds to the rightmost $i \cdot \log _{2} n$ bits of x. If $i=1$, then return y. Otherwise, proceed to the next step.
- Return y / n^{i-1} (integer division).

We can prepare $n, n^{2}, n^{3}, \ldots, n^{c}$ in advance to ensure that y can be calculated in $O(1)$ time. The values of $n, n^{2}, n^{3}, \ldots, n^{c}$ can be calculated in $O(c)=O(1)$ total time.

Example

Suppose that $c=4, n=16$, and $x=011011000010$ (i.e., 1730 in decimal). To get its 2 nd chunk, we do:

- $y=x \bmod n^{2}=1730 \bmod 256=194$
- We return $y / n=194 / 16=12$.

This is correct because 12 is 1100 in binary, namely, the 2nd chunk of x.

Stable sorting: The input is a set S of n key-value pairs of the form (k, v), where k is the key and v is the value. These pairs are given in an array A. Every key is in the range from 1 to n.

The goal is to produce an array B that stores all the pairs in nondescending key order. Furthermore, the sorting must be stable in the following sense. For any two pairs $\left(k_{1}, v_{1}\right)$ and (k_{2}, v_{2}) such that $k_{1}=k_{2}$, if $\left(k_{1}, v_{1}\right)$ is positioned earlier than $\left(k_{2}, v_{2}\right)$ in A, this must also be true in B.

We can adapt counting sort easily to solve the above problem in $O(n)$ time (details left to you).

Radix Sort

We now return to our problem. Let A be the input array of n integers. We sort them by executing the stable counting sort algorithm of the previous slide c times:

- Stable-sort A according to their 1 st chunks. Replace A with the array output.
- Stable-sort A according to their 2 nd chunks. Replace A with the array output.
- ...
- Stable-sort A according to their c-th chunks. Replace A with the array output.

Return the final A.

Analysis

Correctness guaranteed by stability.

Running time clearly $c \cdot O(n)=O(n)$.

