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We already know that n elements can be sorted in O(n log n) time. This

lecture will prove that the time complexity is optimal for

comparison-based algorithms. In other words, every such algorithm must

incur Ω(n log n) time on at least one input.
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There are n! different ways to permute the n elements in the input array
A.

Example

For n = 3, 6 permutations:

A[1],A[2],A[3]

A[1],A[3],A[2]

A[2],A[1],A[3]

A[2],A[3],A[1]

A[3],A[1],A[2]

A[3],A[2],A[1]

The goal of sorting is essentially to decide which of the n! permu-
tations is the final sorted order.
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Comparison-Based Algorithm

Formally, such an algorithm works by continuously shrinking a pool P of
possible permutations.

At the beginning, P contains all the n! permutations.

Every comparison allows the algorithm to discard all those
permutations in P that are inconsistent with the comparison’s result.

Eventually, P has only 1 permutation left, which is thus the final
sorted order.

In other words, at any moment, all the permutations that remain in P are

possible results. The algorithm cannot terminate as long as |P| ≥ 2.
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Shrinking the Pool: An Example

(A[1], A[2], A[3]), (A[1], A[3], A[2])
(A[2], A[1], A[3]), (A[2], A[3], A[1])
(A[3], A[1], A[2]), (A[3], A[2], A[1])

P

A[1] < A[2] A[1] > A[2]

(A[2], A[1], A[3])
(A[2], A[3], A[1])
(A[3], A[2], A[1])

P1 P2

(A[1], A[2], A[3])
(A[3], A[1], A[2])
(A[1], A[3], A[2])

In general, each comparison allows us to shrink P to either P1 or P2.
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Comparison-Based Algorithm: The Framework

Framework
1. P ← all the n! permutations of A
2. while |P| > 1
3. make a comparison between elements e1 and e2
4. if e1 < e2 then
5. P ← P1, where P1 is the set of permutations in P

consistent with e1 < e2
6. else
7. P ← P2, where P2 is the set of permutations in P

consistent with e1 > e2
8. return the permutation in P

Various algorithms differ in how they implement Step 3.
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A Worst-Case Lower Bound

Note that one of P1 and P2 contains at least half of the
permutations in P (i.e., either |P1| ≥ |P|/2 or |P2| ≥ |P|/2).

The worst case happens when P always shrinks to the larger set
between P1 and P2.

In this case, the size of P shrinks by at most half after each
comparison.

Hence, the number of comparisons required before |P| decreases to
1 is log2(n!).

The next slide shows log2(n!) = Ω(n log n).

Yufei Tao Comparison Lower Bound of Sorting (Slides for ESTR2102)



8/8

A Worst-Case Lower Bound

log2(n!) =
n∑

i=1

log2 i

≥
n∑

i=n/2

log2 i

≥ (n/2) log2(n/2)

= Ω(n log n).

We now conclude that any comparison-based algorithm must incur

Ω(n log n) time sorting n elements in the worst case.
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