Comparison Lower Bound of Sorting (Slides for ESTR2102)

Yufei Tao

Department of Computer Science and Engineering Chinese University of Hong Kong

Yufei Tao

Comparison Lower Bound of Sorting (Slides for ESTR2102)

= nac

1/8

イロト 不得 とくほ とくほう

We already know that *n* elements can be sorted in $O(n \log n)$ time. This lecture will prove that the time complexity is optimal for comparison-based algorithms. In other words, every such algorithm must incur $\Omega(n \log n)$ time on at least one input.

2/8

イロト 不得 とくき とくき とうせい

There are n! different ways to permute the n elements in the input array A.

For n = 3, 6 permutations:

 $\begin{array}{l} A[1], A[2], A[3] \\ A[1], A[3], A[2] \\ A[2], A[1], A[3] \\ A[2], A[3], A[1] \\ A[3], A[1], A[2] \\ A[3], A[2], A[1] \end{array}$

The goal of sorting is essentially to decide which of the n! permutations is the final sorted order.

Comparison Lower Bound of Sorting (Slides for ESTR2102)

3/8

4 AP + 4 B + 4 B +

Comparison-Based Algorithm

Formally, such an algorithm works by continuously shrinking a pool P of possible permutations.

- At the beginning, *P* contains all the *n*! permutations.
- Every comparison allows the algorithm to discard all those permutations in P that are inconsistent with the comparison's result.
- Eventually, P has only 1 permutation left, which is thus the final sorted order.

In other words, at any moment, all the permutations that remain in P are possible results. The algorithm cannot terminate as long as $|P| \ge 2$.

4/8

Shrinking the Pool: An Example

In general, each comparison allows us to shrink P to either P_1 or P_2 .

5/8

- 4 同 ト 4 回 ト

Comparison-Based Algorithm: The Framework

Framework

- 1. $P \leftarrow \text{all the } n! \text{ permutations of } A$
- 2. while |P| > 1
- 3. make a comparison between elements e_1 and e_2
- 4. **if** $e_1 < e_2$ **then**
- 5. $P \leftarrow P_1$, where P_1 is the set of permutations in P consistent with $e_1 < e_2$
- 6. else
- 7. $P \leftarrow P_2$, where P_2 is the set of permutations in P consistent with $e_1 > e_2$
- 8. return the permutation in P

Various algorithms differ in how they implement Step 3.

6/8

・ロト ・ 育 ト ・ ヨ ト ・ ヨ ト

A Worst-Case Lower Bound

- Note that one of P₁ and P₂ contains at least half of the permutations in P (i.e., either |P₁| ≥ |P|/2 or |P₂| ≥ |P|/2).
- The worst case happens when *P* always shrinks to the larger set between *P*₁ and *P*₂.
- In this case, the size of *P* shrinks by at most half after each comparison.
- Hence, the number of comparisons required before |P| decreases to 1 is log₂(n!).

The next slide shows $\log_2(n!) = \Omega(n \log n)$.

7/8

《曰》《御》《曰》《曰》 曰

A Worst-Case Lower Bound

$$\log_2(n!) = \sum_{i=1}^n \log_2 i$$

$$\geq \sum_{i=n/2}^n \log_2 i$$

$$\geq (n/2) \log_2(n/2)$$

$$= \Omega(n \log n).$$

We now conclude that any comparison-based algorithm must incur $\Omega(n \log n)$ time sorting *n* elements in the worst case.

Comparison Lower Bound of Sorting (Slides for ESTR2102)

8/8