
1/8

Comparison Lower Bound of Sorting
(Slides for ESTR2102)

Yufei Tao

Department of Computer Science and Engineering
Chinese University of Hong Kong

Yufei Tao Comparison Lower Bound of Sorting (Slides for ESTR2102)

2/8

We already know that n elements can be sorted in O(n log n) time. This

lecture will prove that the time complexity is optimal for

comparison-based algorithms. In other words, every such algorithm must

incur Ω(n log n) time on at least one input.

Yufei Tao Comparison Lower Bound of Sorting (Slides for ESTR2102)

3/8

There are n! different ways to permute the n elements in the input array
A.

Example

For n = 3, 6 permutations:

A[1],A[2],A[3]

A[1],A[3],A[2]

A[2],A[1],A[3]

A[2],A[3],A[1]

A[3],A[1],A[2]

A[3],A[2],A[1]

The goal of sorting is essentially to decide which of the n! permu-
tations is the final sorted order.

Yufei Tao Comparison Lower Bound of Sorting (Slides for ESTR2102)

4/8

Comparison-Based Algorithm

Formally, such an algorithm works by continuously shrinking a pool P of
possible permutations.

At the beginning, P contains all the n! permutations.

Every comparison allows the algorithm to discard all those
permutations in P that are inconsistent with the comparison’s result.

Eventually, P has only 1 permutation left, which is thus the final
sorted order.

In other words, at any moment, all the permutations that remain in P are

possible results. The algorithm cannot terminate as long as |P| ≥ 2.

Yufei Tao Comparison Lower Bound of Sorting (Slides for ESTR2102)

5/8

Shrinking the Pool: An Example

(A[1], A[2], A[3]), (A[1], A[3], A[2])
(A[2], A[1], A[3]), (A[2], A[3], A[1])
(A[3], A[1], A[2]), (A[3], A[2], A[1])

P

A[1] < A[2] A[1] > A[2]

(A[2], A[1], A[3])
(A[2], A[3], A[1])
(A[3], A[2], A[1])

P1 P2

(A[1], A[2], A[3])
(A[3], A[1], A[2])
(A[1], A[3], A[2])

In general, each comparison allows us to shrink P to either P1 or P2.

Yufei Tao Comparison Lower Bound of Sorting (Slides for ESTR2102)

6/8

Comparison-Based Algorithm: The Framework

Framework
1. P ← all the n! permutations of A
2. while |P| > 1
3. make a comparison between elements e1 and e2
4. if e1 < e2 then
5. P ← P1, where P1 is the set of permutations in P

consistent with e1 < e2
6. else
7. P ← P2, where P2 is the set of permutations in P

consistent with e1 > e2
8. return the permutation in P

Various algorithms differ in how they implement Step 3.

Yufei Tao Comparison Lower Bound of Sorting (Slides for ESTR2102)

7/8

A Worst-Case Lower Bound

Note that one of P1 and P2 contains at least half of the
permutations in P (i.e., either |P1| ≥ |P|/2 or |P2| ≥ |P|/2).

The worst case happens when P always shrinks to the larger set
between P1 and P2.

In this case, the size of P shrinks by at most half after each
comparison.

Hence, the number of comparisons required before |P| decreases to
1 is log2(n!).

The next slide shows log2(n!) = Ω(n log n).

Yufei Tao Comparison Lower Bound of Sorting (Slides for ESTR2102)

8/8

A Worst-Case Lower Bound

log2(n!) =
n∑

i=1

log2 i

≥
n∑

i=n/2

log2 i

≥ (n/2) log2(n/2)

= Ω(n log n).

We now conclude that any comparison-based algorithm must incur

Ω(n log n) time sorting n elements in the worst case.

Yufei Tao Comparison Lower Bound of Sorting (Slides for ESTR2102)

