Comparison Lower Bound of Sorting (Slides for ESTR2102)

Yufei Tao
Department of Computer Science and Engineering
Chinese University of Hong Kong

We already know that n elements can be sorted in $O(n \log n)$ time. This lecture will prove that the time complexity is optimal for comparison-based algorithms. In other words, every such algorithm must incur $\Omega(n \log n)$ time on at least one input.

There are n ! different ways to permute the n elements in the input array A.

Example

For $n=3,6$ permutations:

$$
\begin{aligned}
& A[1], A[2], A[3] \\
& A[1], A[3], A[2] \\
& A[2], A[1], A[3] \\
& A[2], A[3], A[1] \\
& A[3], A[1], A[2] \\
& A[3], A[2], A[1]
\end{aligned}
$$

The goal of sorting is essentially to decide which of the n ! permutations is the final sorted order.

Comparison-Based Algorithm
Formally, such an algorithm works by continuously shrinking a pool P of possible permutations.

- At the beginning, P contains all the n ! permutations.
- Every comparison allows the algorithm to discard all those permutations in P that are inconsistent with the comparison's result.
- Eventually, P has only 1 permutation left, which is thus the final sorted order.

In other words, at any moment, all the permutations that remain in P are possible results. The algorithm cannot terminate as long as $|P| \geq 2$.

Shrinking the Pool: An Example

In general, each comparison allows us to shrink P to either P_{1} or P_{2}.

Comparison-Based Algorithm: The Framework

Framework

1. $P \leftarrow$ all the n ! permutations of A
2. while $|P|>1$
3. make a comparison between elements e_{1} and e_{2}
4. if $e_{1}<e_{2}$ then
5. $\quad P \leftarrow P_{1}$, where P_{1} is the set of permutations in P consistent with $e_{1}<e_{2}$ else
$P \leftarrow P_{2}$, where P_{2} is the set of permutations in P consistent with $e_{1}>e_{2}$
6. return the permutation in P

Various algorithms differ in how they implement Step 3.

A Worst-Case Lower Bound

- Note that one of P_{1} and P_{2} contains at least half of the permutations in P (i.e., either $\left|P_{1}\right| \geq|P| / 2$ or $\left.\left|P_{2}\right| \geq|P| / 2\right)$.
- The worst case happens when P always shrinks to the larger set between P_{1} and P_{2}.
- In this case, the size of P shrinks by at most half after each comparison.
- Hence, the number of comparisons required before $|P|$ decreases to 1 is $\log _{2}(n!)$.

The next slide shows $\log _{2}(n!)=\Omega(n \log n)$.

A Worst-Case Lower Bound

$$
\begin{aligned}
\log _{2}(n!) & =\sum_{i=1}^{n} \log _{2} i \\
& \geq \sum_{i=n / 2}^{n} \log _{2} i \\
& \geq(n / 2) \log _{2}(n / 2) \\
& =\Omega(n \log n)
\end{aligned}
$$

We now conclude that any comparison-based algorithm must incur $\Omega(n \log n)$ time sorting n elements in the worst case.

