
1/18

Charging Arguments
[Notes for ESTR2102]

Yufei Tao

Department of Computer Science and Engineering
Chinese University of Hong Kong

Yufei Tao Charging Arguments



2/18

Recall

In general, if a data structure can process any n operations in f (n)

time, we say that it guarantees an amortized cost of f (n)
n per

operation.

Today, we will learn a charging argument technique to prove amortized

costs.

Yufei Tao Charging Arguments



3/18

Ideas behind a Charging Argument

Consider n operations on a data structure. The i-th (1 ≤ i ≤ n)
operation incurs cost Ci . Our goal is to prove:

n∑
i=1

Ci ≤ f (n). (1)

Suppose that we can assign a “fake” cost Ci ≤ f (n)
n to the i-th operation

such that

n∑
i=1

Ci ≤
n∑

i=1

Ci . (2)

(1) will then follow from (2).

Yufei Tao Charging Arguments



4/18

Recall: the Dynamic Array Problem

Let S be a collection of integers (not necessarily distinct). S is empty in
the beginning. Integers are then added to S one by one with insertions.

Let n be the number of elements in S currently. We want to maintain an
array A satisfying:

1 A has length O(n).

2 For each i ∈ [1, n], A[i ] = x if x is the i-th integer added to S .

The above requirements need to be satisfied after every insertion.

Yufei Tao Charging Arguments



5/18

Recall: The Expansion Algorithm

n = 1

n = 2

n = 3

n = 4

n = 5

...

n = 8

Yufei Tao Charging Arguments



6/18

Charging Argument

Earlier, we proved that each insertion has amortized cost O(1). Next, we
give an alternative analysis for proving the same.

Our algorithm ensures an invariant:

After an expansion, the new array has size 2n, namely, there are n
empty positions.

Yufei Tao Charging Arguments



7/18

Charging Argument

Let Ci be the actual cost of the i-th insertion.

We will assign an amortized cost Ci to the i-th insertion.

Yufei Tao Charging Arguments



8/18

Charging Argument

For the n-th operation, first set Cn = O(1).

If the array does not expand, done.

An array expansion takes at most cn time for some constant c .

⇒ The previous expansion happened when S had n/2 elements.

⇒ n/2 empty positions in the previous array.

⇒ n/2 insertions have taken place since the previous expansion.

⇒ Charge the cn cost over those n/2 insertions: for each of those

insertions, add cn
n/2 = 2c = O(1) to its amortized cost.

Yufei Tao Charging Arguments



9/18

Example

n = 1

n = 2

n = 3

n = 4

n = 5

...

n = 8

expanding cost charged on the insertions of elements 3, 4

expanding cost charged on the insertion of the 2nd element

expanding cost charged on the insertions of elements 5-8

Each insertion is charged at most once.

Yufei Tao Charging Arguments



10/18

Charging Argument

Convince yourself:

n∑
i=1

Ci ≤
n∑

i=1

Ci

and

Ci = O(1).

Therefore, the total cost of all the n operations is O(n).

Yufei Tao Charging Arguments



11/18

The Stack-with-Array Problem

Let S be a collection of integers (not necessarily distinct). We want to
support:

push(e): add an integer e into S .

pop: remove the most recently inserted integer from S .

At any moment, let m be the number of elements in S . We want to store
all the elements of S in an array A satisfying:

1 A has length O(m)

2 A[1] is the least recently inserted element, A[2] the second least
recently inserted, ..., A[m] the most recently inserted.

We will denote by n the number of operations processed so far.

Yufei Tao Charging Arguments



12/18

The Stack-with-Array Problem

We will give an algorithm for maintaining such an array by handling
n operations in O(n) time, namely, each operation is processed in
O(1) amortized time.

Yufei Tao Charging Arguments



13/18

The Stack-with-Array Problem

1 A is full if all its cells are filled.

2 A is sparse if at most 1/4 of its cells are filled.

We will enforce an invariant:

At creation, an array is half full (i.e., half of its cells are filled).

Yufei Tao Charging Arguments



14/18

Push

Carry out push(e) in the same way we perform an insertion in the

dynamic array problem.

Yufei Tao Charging Arguments



15/18

Pop

Perform pop as follows:

Return the last element of A and decrease n by 1. If A is sparse,
then:

Initialize an array A′ of length 2n.
Copy all the n elements of A over to A′.
Destroy A and replace it with A′.

Yufei Tao Charging Arguments



16/18

Example

11 pushes followed by 9 pops on an initially empty stack:

n = 4, push

n = 8, push

...

n = 1, push

n = 2, push

...

n = 11, push

...

Yufei Tao Charging Arguments



17/18

Example

n = 17 pop

n = 18, pop

n = 19, pop

n = 20, pop

...

Yufei Tao Charging Arguments



18/18

Think: how to prove that each operation incurs only O(1) amor-
tized cost?

Yufei Tao Charging Arguments


