CSCI2100/ESTR2102: Assignment (Due: 15 Nov, 11:59pm)

Problem 1. You are given a positive integer n (that is stored in a register of the CPU). Design an algorithm to determine whether n is a prime number. Your algorithm should have a cost no more than $O(\sqrt{n})$. Note that calculating \sqrt{n} is not an atomic operation.

Problem 2. Prove: $5 n+3 \sqrt{n}=O(n)$.
Problem 3. Let $f(n)$ be a function of positive integer n. We know:

$$
\begin{aligned}
f(1) & =1 \\
f(n) & =10+2 \cdot f(\lceil n / 8\rceil) .
\end{aligned}
$$

Prove $f(n)=O\left(n^{1 / 3}\right)$.
Problem 4. Let $f(n)$ be a function of positive integer n. We know:

$$
\begin{aligned}
f(1) & =1 \\
f(n) & =f(\lceil n / 4\rceil)+f(\lceil n / 2\rceil)+n .
\end{aligned}
$$

Prove $f(n)=O(n)$.
Problem 5. Let S be a set of n integers, and k_{1}, k_{2} arbitrary integers satisfying $1 \leq k_{1} \leq k_{2} \leq n$. Suppose that S is given in an array. Give an $O(n)$ expected time algorithm to report all the integers whose ranks in S are in the range $\left[k_{1}, k_{2}\right]$. Recall that the rank of an integer v in S equals the number of integers in S that are at most v.

Problem 6. Let S_{1} and S_{2} be two sets of integers (they are not necessarily disjoint). We know that $\left|S_{1}\right|=\left|S_{2}\right|=n$ (i.e., each set has n integers). Each set is given in array where its elements are in ascending order. Design an algorithm to report $S_{1} \cap S_{2}$ in $O(n)$ time.

Problem 7. Let S be a perhaps multi-set of n integers. Give an algorithm to determine whether S has two identical integers. Your algorithm should terminate in $O(n)$ expected time.

Problem 8. Answer the following questions based on the priority queue below

- Show the priority queue after inserting the number 3 .
- Show the priority queue after performing a delete-min (on the data structure shown in the figure).

