
More on Binary Heaps

CSCI2100 Tutorial 9

Jianwen Zhao

Department of Computer Science and Engineering
The Chinese University of Hong Kong

Adapted from the slides of the previous offerings of the course

CSCI2100, The Chinese University of Hong Kong More on Binary Heaps



Introduction

In the previous lectures, we have implemented the priority queue (which
supports insert(e) and delete-min operations) using a data structure
called the binary heap and achieved the following guarantees:

O(n) space consumption

O(log n) insertion time

O(log n) delete-min time

In this tutorial, we will try to enhance our understanding of the binary

heap through some examples and exercises.

CSCI2100, The Chinese University of Hong Kong More on Binary Heaps



Example on Insertion

Assume that we want to insert 12 into the following binary heap. Fisrt,
add 12 as a leaf, making sure that we still have a complete binary tree.

3

15

37

91 12

27

18

53 20

CSCI2100, The Chinese University of Hong Kong More on Binary Heaps



Example on Insertion

Then we fix the violations caused by this newly added element.

3

15

12

91 37

27

18

53 20

⇒

3

12

15

91 37

27

18

53 20

No more violations, insertion complete. An insertion can be processed in

O(log n) time.

CSCI2100, The Chinese University of Hong Kong More on Binary Heaps



Example on Delete-min

Assume that we want to perform delete-min from this binary heap below:

3

12

15

91 37

27

18

53 20

First, find the rightmost leaf at the bottom level, namely, 37.

CSCI2100, The Chinese University of Hong Kong More on Binary Heaps



Example on Delete-min

Remove this leaf, but place the value 37 in the root.

37

12

15

91

27

18

53 20

CSCI2100, The Chinese University of Hong Kong More on Binary Heaps



Example on Delete-min

Then we fix the violations caused by 37.

12

37

15

91

27

18

53 20

⇒

12

15

37

91

27

18

53 20

No more violations, delete-min complete. A delete-min can be processed

in O(log n) time.

CSCI2100, The Chinese University of Hong Kong More on Binary Heaps



Regular Exercise 8 Problem 4

Problem

Suppose that we have k sorted arrays (in ascending order) A1,A2, · · · ,Ak

of integers. Let n be the total number of integers in those arrays.
Describe an algorithm to produce an array that sorts all the n integers in
ascending order in O(n log k) time.

Example

Suppose that k = 3, and the 3 arrays are as follows:

A1: 2 23 32 35 37 A2: 5 10 A3: 33 58 82

Then you should produce an array B as below in O(n log k) time.

B: 2 5 10 23 32 33 35 37 58 82

CSCI2100, The Chinese University of Hong Kong More on Binary Heaps



Regular Exercise 8 Problem 4

Solution

Insert the smallest elements of each array into a binary heap H. This
takes O(k log k) time. Then, repeat the following until H is empty:

Perform a delete-min. Let e be the element fetched.

Append e to the output array.

If e comes from Ai (for some i), obtain the next element from Ai ,
and insert it into H. If Ai has been exhausted, then do nothing.

CSCI2100, The Chinese University of Hong Kong More on Binary Heaps



Regular Exercise 8 Problem 4

Example

Suppose that k = 3, and the 3 arrays are as follows:

A1: 2 23 32 35 37 A2: 5 10 A3: 33 58 82

First, we insert the smallest elements of each array into a binary heap H:

2

5 33

Initially, the output array B is empty.

B:

CSCI2100, The Chinese University of Hong Kong More on Binary Heaps



Regular Exercise 8 Problem 4

Example

A1: 2 23 32 35 37 A2: 5 10 A3: 33 58 82

Then, we perform a delete-min on H, and fetch e = 2, then append 2
to the output array B. Since e comes from A1, we obtain the next
element 23 from A1, and insert it into H.

2

5 33 ⇒ delete-min ⇒

5

33 ⇒ insert(23) ⇒

5

33 23

Output array B: 2

CSCI2100, The Chinese University of Hong Kong More on Binary Heaps



Regular Exercise 8 Problem 4

Example

A1: 2 23 32 35 37 A2: 5 10 A3: 33 58 82

Perform another delete-min on the new H, and fetch e = 5, then
append 5 to the output array B. Since e comes from A2, we obtain the
next element 10 from A2, and insert it into H.

5

33 23 ⇒ delete-min ⇒

23

33 ⇒ insert(10) ⇒

10

33 23

Output array B: 2 5

CSCI2100, The Chinese University of Hong Kong More on Binary Heaps



A1: 2 23 32 35 37 A2: 5 10 A3: 33 58 82

10

33 23 ⇒ delete-min ⇒

23

33 ⇒ A2 exhausted ⇒ do nothing

Output array B: 2 5 10

——————————————————————————————–

A1: 2 23 32 35 37 A2: 5 10 A3: 33 58 82

23

33 ⇒ delete-min ⇒ 33 ⇒ insert(32) ⇒

32

33

Output array B: 2 5 10 23

CSCI2100, The Chinese University of Hong Kong More on Binary Heaps



A1: 2 23 32 35 37 A2: 5 10 A3: 33 58 82

32

33 ⇒ delete-min ⇒ 33 ⇒ insert(35) ⇒

33

35

Output array B: 2 5 10 23 32

——————————————————————————————–

A1: 2 23 32 35 37 A2: 5 10 A3: 33 58 82

33

35 ⇒ delete-min ⇒ 35 ⇒ insert(58) ⇒

35

58

Output array B: 2 5 10 23 32 33

CSCI2100, The Chinese University of Hong Kong More on Binary Heaps



A1: 2 23 32 35 37 A2: 5 10 A3: 33 58 82

35

58 ⇒ delete-min ⇒ 58 ⇒ insert(37) ⇒

37

58

Output array B: 2 5 10 23 32 33 35

——————————————————————————————–

A1: 2 23 32 35 37 A2: 5 10 A3: 33 58 82

37

58 ⇒ delete-min ⇒ 58 ⇒ A1 exhausted ⇒ do nothing

Output array B: 2 5 10 23 32 33 35 37

CSCI2100, The Chinese University of Hong Kong More on Binary Heaps



A1: 2 23 32 35 37 A2: 5 10 A3: 33 58 82

58 ⇒ delete-min ⇒ insert(82) ⇒ 82

Output array B: 2 5 10 23 32 33 35 37 58

——————————————————————————————–

A1: 2 23 32 35 37 A2: 5 10 A3: 33 58 82

82 ⇒ delete-min ⇒ no more insertions ⇒ H is empty ⇒ stop

Finally, we produce the output array B with all the n = 10 elements
sorted in ascending order:

Output array B: 2 5 10 23 32 33 35 37 58 82

CSCI2100, The Chinese University of Hong Kong More on Binary Heaps



Cost Analysis

Insert the smallest elements of each array into a binary Heap H
takes O(k log k) time.

Each delete-min and insertion require O(log k) time.

- Since H has at most k elements.

At most n delete-min and n insertions.

- Since those arrays contains n elements in total.

Overall, our algorithms takes O(k log k) + n ·O(log k) = O(n log k) time.

CSCI2100, The Chinese University of Hong Kong More on Binary Heaps



Special Exercise 8 Problem 4

Problem

Let S be a dynamic set of integers. At the beginning, S is empty. Then,
new integers are added to it one by one, but never deleted. Let k be a
fixed integer. Describe an algorithm which achieves the following
guarantees:

Space consumption O(k)

Insert(e): Insert a new element e into S , which takes at most
O(log k) time.

Report-top-k : Report the k largest integers in S .

Example

Suppose that k = 3, and the sequence of integers inserted is

83, 21, 66, 5, 24, 76, 92, 33, 43, · · · . Your algorithm must be keeping

{83, 66, 24} after the insertion of 24, {83, 66, 76} after the insertion of

76, and {83, 76, 92} after the insertion of 43.

CSCI2100, The Chinese University of Hong Kong More on Binary Heaps



Special Exercise 8 Problem 4

Solution 1

We maintain a binary heap with k elements, which obviously consumes
O(k) space.

First, perform k insertions to build a binary heap H rooted at r on
the first inserted k elements of S , and each insertion takes at most
O(log k) time.

For a newly inserted integer e, compare it with the root r of H:

If e > r , replace r with e, and perform root-fix on H.

- This takes O(log k) time.

Otherwise, ingore e.

Then, at any moment, H contains the k largest integers of S .

- Report-top-k = Report(H).

CSCI2100, The Chinese University of Hong Kong More on Binary Heaps



Special Exercise 8 Problem 4

Example

Suppose that the sequence of integers inserted is:
83, 21, 66, 5, 24, 76, 92, 33, 43, · · · , and k = 3.

First of all, build a binary heap H on the first inserted 3 elements
{83, 21, 66}:

21

83 66

CSCI2100, The Chinese University of Hong Kong More on Binary Heaps



Special Exercise 8 Problem 4

Example

Suppose that the sequence of integers inserted is:
83, 21, 66, 5, 24, 76, 92, 33, 43, · · · , and k = 3.

Next, we perform insertions one by one, and see what will happen on our
binary heap H:

21

83 66 ⇒ insert(5) ⇒

21

83 66 ⇒ insert(24) ⇒

24

83 66

⇒ insert(76) ⇒

66

83 76 · · · ⇒ insert(43) ⇒

76

83 92

CSCI2100, The Chinese University of Hong Kong More on Binary Heaps



Special Exercise 8 Problem 4

Solution 2

We maintain an array A with length 2k , which obviously consumes O(k)
space.

First, append the first inserted k elements of S to A.

Append the i-th (i > k) inserted integer of S to A. Once A is full,
do the following:

Perform k-selection to find the k-th largest element of A,
denoted by v .
Remove the elements which are smaller than v from A.
Rearrange A such that A[1],A[2], · · · ,A[k] contains the
k-largest element respectively.
Report-top-k .

CSCI2100, The Chinese University of Hong Kong More on Binary Heaps



Special Exercise 8 Problem 4

Example

Suppose that the sequence of integers inserted is:
83, 21, 66, 5, 24, 76, 92, 33, 43, · · · , and k = 3.

First of all, creat an array A with length 2k = 6.

A:

Then keep insertion one by one.

CSCI2100, The Chinese University of Hong Kong More on Binary Heaps



Special Exercise 8 Problem 4

Example

S = {83, 21, 66, 5, 24, 76, 92, 33, 43, · · · }, k = 3.

83 ⇒ 83 21 ⇒ 83 21 66

⇒ 83 21 66 5 ⇒ 83 21 66 5 24 ⇒ 83 21 66 5 24 76

A is full now. We perform k-selection to find the 3rd-largest integer,
which is 66. Then remove the elements which are smaller than 66 from A:

83 66 76 ⇒ rearrange ⇒ 83 66 76

So the top-k (top-3) elements are {83, 66, 76}. We can continue

insertion like this.

CSCI2100, The Chinese University of Hong Kong More on Binary Heaps



Cost Analysis

Append the first inserted elements of S to A takes O(k) time.

Keep insertion, once A is full, we perform k-selection to report
top-k , which takes O(k) time.

Remove the elements and rearrange A takes O(k) time.

Overall, our algorithm takes O(k) time. Charge these costs to the k
insertions indicated below, each insertion bears O(1) time, and each
insertion is only charged once.

2k

k insertions

CSCI2100, The Chinese University of Hong Kong More on Binary Heaps


