More on Hashing

CSCI2100 Tutorial 8 Shangqi Lu

Adapted from the slides of the previous offerings of the course

Review on Hash Table

- Given a set of integers S in [1, U]
- Main idea: divide S into a number m of disjoint subsets
- Guaranteed
 - Space consumption: O(n)
 - Query cost: O(1) in expectation
 - Preprocessing cost: O(n)

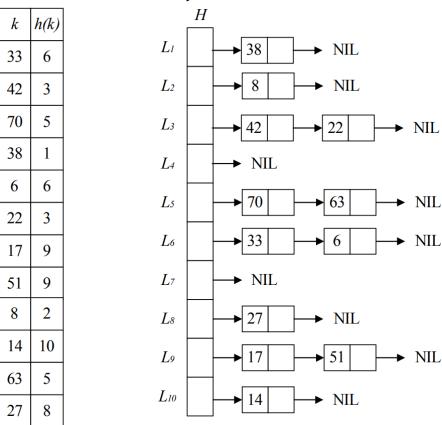
Review on Hash Table

- No single hash function works for all sets
- Construct a hash function from a universal family
 - Pick a prime number p such that $p \geq m$ and $p \geq U$
 - Choose an integer α from [1,p-1] uniformly at random
 - Choose an integer β from [0,p-1] uniformly at random
 - Define a hash function:

 $h(k) = 1 + ((\alpha k + \beta) \mod p) \mod m$

Example

- Let $S = \{33, 42, 70, 38, 6, 22, 17, 51, 8, 14, 63, 27\}$
- We choose m = 10, p = 71, suppose that α and β are randomly chosen to be 3 and 7, respectively
- $h(k) = 1 + (((3k + 7) \mod 71) \mod 10)$



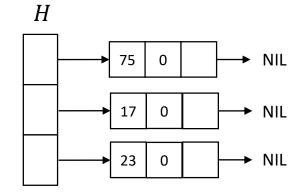
Adapted from Dan He's slides

Regular Exercise 7 Problem 3

- Let S be a multi-set of n integers
- Frequency of an integer *x*:
 - No. of occurrences of *x* in *S*
- Design an algorithm to produce an array that sorts the distinct integers by frequency in O(n) expected time
- E.g.,
 - $S = \{23, 75, 17, 17, 23\}$
 - You should output (75,17,23) or (75,23,17)
 - If two integers have the same frequency, their relative order is not important

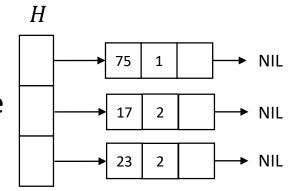
Solution

- First, choose a hash function h and create a hash table H
- For each integer $x \in S$
 - If the *H* already contained a copy of *x*
 - Ignore *x*
 - Else
 - Compute h(x)
 - Insert (x, 0) into the H[h(x)]
- The checking in each iteration takes O(1) in expectation
- Overall: O(n) in expectation



Solution

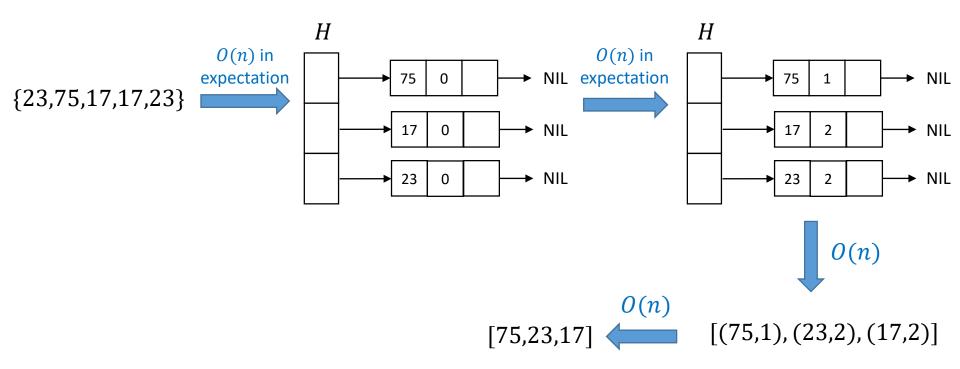
- Second, obtain the frequency of every distinct integers
- For each integer $x \in S$
 - Find its copy in *H*
 - Increase the counter of the copy by one
 - Takes O(1) expected time
- This part takes O(n) in expectation



Solution

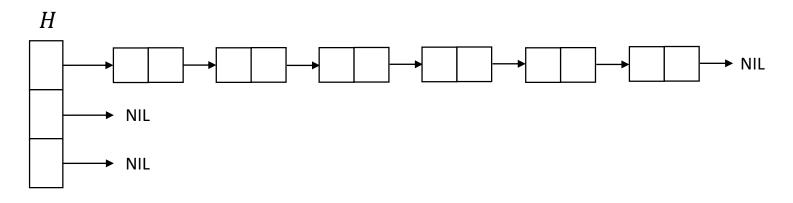
- Finally, sort all the distinct integers by frequency
- Since the frequency of every integer in *S* is in the domain [1, *n*]
- Use counting sort to sort the integers by frequency (see tutorial 6), takes O(n) time
- E.g., we get [(75,1), (23,2), (17,2)]
- Generate output from these sorted tuples, takes O(n) time
- E.g., [75,23,17]

Time Complexity



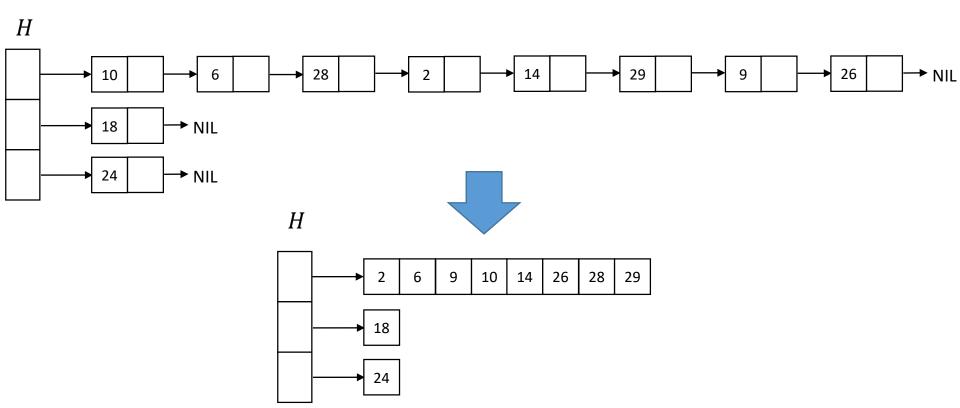
• Overall complexity: O(n) in expectation

- Expected query cost: O(1)
 - Pick a hash function from a universal family
- Worst-case query cost: O(n)
 - All elements are hashed into the same value

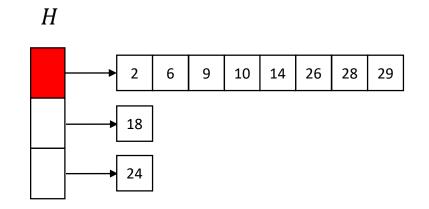


• Can we improve the worst-case query cost?

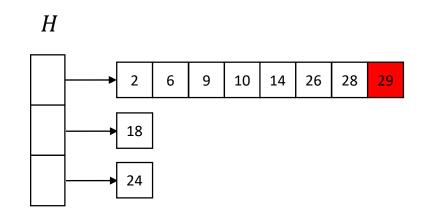
- Replace linked lists with arrays
- Sort the arrays, cost $O(n \log n)$ for preprocessing



- Query: whether 29 exists
- Step 1:
 - Access the hash table to obtain the address of corresponding array
 - Takes O(1) time



- Query: whether 29 exists
- Step 2:
 - Perform binary search on the array to find the target
 - Takes $O(\log n)$ time
- Overall worst-case complexity: $O(\log n)$



- This method retains the O(1) expected query time
- Proof:
 - Suppose we look up an integer q
 - Define random variable $L_{h(q)}$ to be the length of array that corresponds to the hash value h(q)
 - Expected query time:
 - $E[\log_2 L_{h(q)}] = \sum_{l=1}^n \log_2 l \Pr(L_{h(q)} = l)$ • $\leq \sum_{l=1}^n l \Pr(L_{h(q)} = l)$ • $E[L_{h(q)}]$
 - = 0(1)

Revisiting the Two-Sum Problem

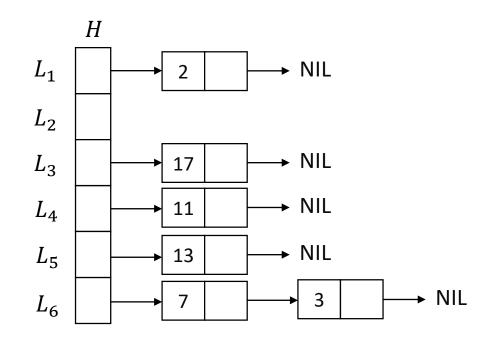
- Problem Input:
 - A set S of unsorted *n* distinct integers
 - The value *n* has been placed in Register 1
 - A positive integer v has been placed in Register 2
- Goal:
 - Determine whether if there exist two different integers x and y in S such that x + y = v
- For example:
 - Find a pair whose sum is 20

Solution 1: Binary Search the Answer

- Goal: Find a pair(x, y) such that x + y = v
- Observe that given x, y = v x, is determined
- Solution:
 - Sort S
 - For each x in S:
 - set y as v x
 - Use binary search to see if *y* exists in the sequence
- Time complexity: $O(n \log_2 n)$

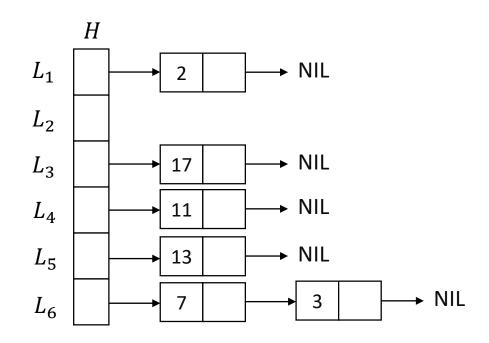
Solution 2: Using the Hash Table

- Step 1 and 2:
 - Choose a hash function *h* and create an empty hash table *H*
 - Insert each x in S into $L_{h(x)}$



Solution 2: Using the Hash Table

- Step 3:
 - For each x in S:
 - Set y as v x
 - Check if y is in the hash table
 - If so, return yes
 - Return no



11 3	17	7	2	13
------	----	---	---	----

Time Complexity

- Step 1 and 2: *O*(*n*)
- Step 3: O(n) in expectation
- Overall: O(n) in expectation