More on Hashing

CSCI2100 Tutorial 8
 Shangqi Lu

Adapted from the slides of the previous offerings of the course

Review on Hash Table

- Given a set of integers S in $[1, U]$
- Main idea: divide S into a number m of disjoint subsets
- Guaranteed
- Space consumption: $O(n)$
- Query cost: $O(1)$ in expectation
- Preprocessing cost: $O(n)$

Review on Hash Table

- No single hash function works for all sets
- Construct a hash function from a universal family
- Pick a prime number p such that $p \geq m$ and $p \geq U$
- Choose an integer α from [1, $p-1$] uniformly at random
- Choose an integer β from [0, $p-1$] uniformly at random
- Define a hash function:

$$
h(k)=1+((\alpha k+\beta) \bmod p) \bmod m
$$

Example

- Let $S=\{33,42,70,38,6,22,17,51,8,14,63,27\}$
- We choose $m=10, p=71$, suppose that α and β are randomly chosen to be 3 and 7 , respectively
- $h(k)=1+(((3 k+7) \bmod 71) \bmod 10)$

k	$h(k)$
33	6
42	3
70	5
38	1
6	6
22	3
17	9
51	9
8	2
14	10
63	5
27	8

Regular Exercise 7 Problem 3

- Let S be a multi-set of n integers
- Frequency of an integer x :
- No. of occurrences of x in S
- Design an algorithm to produce an array that sorts the distinct integers by frequency in $O(n)$ expected time
- E.g.,
- $S=\{23,75,17,17,23\}$
- You should output $(75,17,23)$ or $(75,23,17)$
- If two integers have the same frequency, their relative order is not important

Solution

- First, choose a hash function h and create a hash table H
- For each integer $x \in S$

- If the H already contained a copy of x
- Ignore x
- Else
- Compute $h(x)$
- Insert $(x, 0)$ into the $H[h(x)]$
- The checking in each iteration takes $O(1)$ in expectation
- Overall: $O(n)$ in expectation

Solution

- Second, obtain the frequency of every distinct integers
- For each integer $x \in S$
- Find its copy in H
- Increase the counter of the copy by one
- Takes O (1) expected time
- This part takes $O(n)$ in expectation

Solution

- Finally, sort all the distinct integers by frequency
- Since the frequency of every integer in S is in the domain [1, n]
- Use counting sort to sort the integers by frequency (see tutorial 6), takes $O(n)$ time
- E.g., we get $[(75,1),(23,2),(17,2)]$
- Generate output from these sorted tuples, takes $O(n)$ time
- E.g., [75,23,17]

Time Complexity

$\{23,75,17,17,23\}$

[75,23,17]
$O(n)$
[(75,1), (23,2), (17,2)]

- Overall complexity: $O(n)$ in expectation

Hash Table

- Expected query cost: $O(1)$
- Pick a hash function from a universal family
- Worst-case query cost: $O(n)$
- All elements are hashed into the same value

- Can we improve the worst-case query cost?

Hash Table

- Replace linked lists with arrays
- Sort the arrays, cost O (n logn) for preprocessing

Hash Table

- Query: whether 29 exists
- Step 1:
- Access the hash table to obtain the address of corresponding array
- Takes O(1) time

Hash Table

- Query: whether 29 exists
- Step 2:
- Perform binary search on the array to find the target
- Takes $O(\log n)$ time
- Overall worst-case complexity: $O(\log n)$

Hash Table

- This method retains the $O(1)$ expected query time
- Proof:
- Suppose we look up an integer q
- Define random variable $L_{h(q)}$ to be the length of array that corresponds to the hash value $h(q)$
- Expected query time:
- $\mathrm{E}\left[\log _{2} L_{h(q)}\right]=\sum_{l=1}^{n} \log _{2} l \operatorname{Pr}\left(L_{h(q)}=l\right)$
$\leq \sum_{l=1}^{n} l \operatorname{Pr}\left(L_{h(q)}=l\right)$
- $\quad=\mathrm{E}\left[L_{h(q)}\right]$
- $\quad=O(1)$

Revisiting the Two-Sum Problem

- Problem Input:
- A set S of unsorted n distinct integers
- The value n has been placed in Register 1
- A positive integer v has been placed in Register 2
- Goal:
- Determine whether if there exist two different integers x and y in S such that $x+y=v$
- For example:
- Find a pair whose sum is 20

11	3	17	7	2	13

Solution 1: Binary Search the Answer

- Goal: Find a pair (x, y) such that $x+y=v$
- Observe that given $\mathrm{x}, y=v-x$, is determined
- Solution:
- Sort S
- For each x in S:
- set y as $v-x$
- Use binary search to see if y exists in the sequence
- Time complexity: $O\left(n \log _{2} n\right)$

Solution 2: Using the Hash Table

- Step 1 and 2:
- Choose a hash function h and create an empty hash table H
- Insert each x in S into $L_{h(x)}$

Solution 2: Using the Hash Table

- Step 3:
- For each x in S :
- Set y as $v-x$
- Check if y is in the hash table
- If so, return yes
- Return no

11	3	17	7	2	13

Time Complexity

- Step 1 and 2: $O(n)$
- Step 3: $O(n)$ in expectation
- Overall: $O(n)$ in expectation

