
More on Hashing

CSCI2100 Tutorial 8

Shangqi Lu

Adapted from the slides of the previous offerings of the course

Review on Hash Table

• Given a set of integers 𝑆 in [1, 𝑈]

• Main idea: divide 𝑆 into a number 𝑚 of disjoint
subsets

• Guaranteed
• Space consumption: 𝑂(𝑛)

• Query cost: 𝑂(1) in expectation

• Preprocessing cost: 𝑂(𝑛)

Review on Hash Table

• No single hash function works for all sets

• Construct a hash function from a universal family
• Pick a prime number p such that 𝑝 ≥ 𝑚 and 𝑝 ≥ 𝑈

• Choose an integer 𝛼 from [1, 𝑝 − 1] uniformly at
random

• Choose an integer 𝛽 from [0, 𝑝 − 1] uniformly at
random

• Define a hash function:
ℎ 𝑘 = 1 + 𝛼𝑘 + 𝛽 mod 𝑝 mod 𝑚

Example
• Let 𝑆 = {33,42,70,38,6,22,17,51,8,14,63,27}

• We choose 𝑚 = 10, 𝑝 = 71, suppose that 𝛼 and 𝛽 are randomly chosen
to be 3 and 7, respectively

• ℎ 𝑘 = 1 + (3𝑘 + 7 mod 71 mod 10)

Adapted from Dan He’s slides

Regular Exercise 7 Problem 3

• Let 𝑆 be a multi-set of 𝑛 integers

• Frequency of an integer 𝑥:
• No. of occurrences of 𝑥 in 𝑆

• Design an algorithm to produce an array that sorts
the distinct integers by frequency in 𝑂 𝑛 expected
time

• E.g.,
• 𝑆 = {23,75,17,17,23}

• You should output 75,17,23 or 75,23,17

• If two integers have the same frequency, their relative
order is not important

Solution

• First, choose a hash function ℎ and create a hash
table 𝐻

• For each integer 𝑥 ∈ 𝑆
• If the 𝐻 already contained a copy of 𝑥

• Ignore 𝑥

• Else
• Compute ℎ(𝑥)
• Insert (𝑥, 0) into the 𝐻[ℎ(𝑥)]

• The checking in each iteration takes 𝑂(1) in
expectation

• Overall: 𝑂(𝑛) in expectation

𝐻

75 NIL

NIL17

23 NIL

0

0

0

Solution

• Second, obtain the frequency of every distinct
integers

• For each integer 𝑥 ∈ 𝑆
• Find its copy in 𝐻

• Increase the counter of the copy by one

• Takes 𝑂(1) expected time

• This part takes 𝑂(𝑛) in expectation

𝐻

75 NIL

NIL17

23 NIL

1

2

2

Solution

• Finally, sort all the distinct integers by frequency

• Since the frequency of every integer in 𝑆 is in the
domain [1, 𝑛]

• Use counting sort to sort the integers by frequency
(see tutorial 6), takes 𝑂(𝑛) time

• E.g., we get [(75,1), (23,2), (17,2)]

• Generate output from these sorted tuples, takes
𝑂(𝑛) time

• E.g., [75,23,17]

Time Complexity

• Overall complexity: 𝑂(𝑛) in expectation

𝐻

75 NIL

NIL17

23 NIL

0

0

0

{23,75,17,17,23}

𝑂(𝑛) in
expectation

𝐻

75 NIL

NIL17

23 NIL

1

2

2

𝑂(𝑛)

[(75,1), (23,2), (17,2)]
𝑂(𝑛)

[75,23,17]

𝑂(𝑛) in
expectation

Hash Table

• Expected query cost: 𝑂(1)
• Pick a hash function from a universal family

• Worst-case query cost: 𝑂(𝑛)
• All elements are hashed into the same value

• Can we improve the worst-case query cost?

𝐻

NIL

NIL

NIL

Hash Table

• Replace linked lists with arrays

• Sort the arrays, cost 𝑂(n logn) for preprocessing

NIL

𝐻

10 6 28 2 14 29 9 26

𝐻

2 6 9 10 14 26 28 29

NIL18

NIL24

18

24

Hash Table

• Query: whether 29 exists

• Step 1:
• Access the hash table to obtain the address of

corresponding array

• Takes 𝑂(1) time

𝐻

2 6 9 10 14 26 28 29

18

24

Hash Table

• Query: whether 29 exists

• Step 2:
• Perform binary search on the array to find the target

• Takes 𝑂(log 𝑛) time

• Overall worst-case complexity: 𝑂(log 𝑛)

𝐻

2 6 9 10 14 26 28 29

18

24

Hash Table

• This method retains the 𝑂(1) expected query time

• Proof:
• Suppose we look up an integer 𝑞

• Define random variable 𝐿ℎ 𝑞 to be the length of array that
corresponds to the hash value ℎ 𝑞

• Expected query time:
• E log2 𝐿ℎ 𝑞 = 𝑙=1

𝑛 log2 𝑙 Pr 𝐿ℎ 𝑞 = 𝑙

• ≤ 𝑙=1
𝑛 𝑙 Pr 𝐿ℎ 𝑞 = 𝑙

• = E 𝐿ℎ 𝑞

• = 𝑂(1)

Revisiting the Two-Sum Problem

• Problem Input:
• A set S of unsorted 𝑛 distinct integers

• The value 𝑛 has been placed in Register 1

• A positive integer 𝑣 has been placed in Register 2

• Goal:
• Determine whether if there exist two different integers 𝑥 and 𝑦 in S such that
𝑥 + 𝑦 = 𝑣

• For example:

• Find a pair whose sum is 20

11 3 17 7 2 13

Solution 1: Binary Search the Answer

• Goal: Find 𝑎 𝑝𝑎𝑖𝑟(𝑥, 𝑦) such that 𝑥 + 𝑦 = 𝑣

• Observe that given x, 𝑦 = 𝑣 − 𝑥, is determined

• Solution:
• Sort S

• For each 𝑥 in S:
• set 𝑦 as 𝑣 − 𝑥

• Use binary search to see if 𝑦 exists in the sequence

• Time complexity: 𝑂(𝑛 log2 𝑛)

Solution 2: Using the Hash Table

2 NIL

𝐻

17 NIL

11 NIL

13 NIL

7 NIL3

• Step 1 and 2:
• Choose a hash function ℎ and create an empty hash table 𝐻

• Insert each x in S into 𝐿ℎ 𝑥

𝐿1

𝐿5

𝐿2

𝐿3

𝐿4

𝐿6

Solution 2: Using the Hash Table

• Step 3:

• For each 𝑥 in S:
• Set 𝑦 as 𝑣 − 𝑥

• Check if y is in the hash table

• If so, return yes

• Return no

2 NIL

𝐻

17 NIL

11 NIL

13 NIL

7 NIL3

𝐿1

𝐿5

𝐿2

𝐿3

𝐿4

𝐿6
11 3 17 7 2 13

Time Complexity

• Step 1 and 2: 𝑂(𝑛)

• Step 3: 𝑂 𝑛 in expectation

• Overall: 𝑂 𝑛 in expectation

