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Introduction

In the previous lectures, we have introduced the dynamic array problem
and solved it by making use of some clever tricks which allow us to
perform n operations in O(n) time, namely, each operation takes O(1)
amortized time. We also implemented the data structure stack by
exploiting dynamic array.

In this tutorial, we will introduce a new version of dynamic array with

smaller space consumption, while each operation still costs O(1)

amortized time. We will also try to implement another data structure –

the queue – with dynamic array.
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Recap: Dynamic Array Problem

Let S be a multi-set of integers that grows with time. At the beginning,
S is empty. Over time, the integers of S are added by the following
operation:

insert(e): which adds an integer e into S .

At any moment, let n be the number of elements in S . We want to store
all the elements of S in an array A satisfying:

1 A has length O(n)

2 If an integer x was the i-th(i ≥ 1) inserted, then A[i ] = x(i.e., x is
at the i-th position of the array).
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Recall that, while performing insertions to a dynamic array A, once A is
full, we expand A by doubling the current length. We proved that each
insertion costs O(1) amortized time and that the space consumption is
O(n) at any moment.

In fact, it is not necessary to restrict the expansion to doubling. In the

following, we will show a new version of dynamic array which expands the

length of A to 1.5n once A is full, while each operation still costs O(1)

amortized time.
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Dynamic Array – A New Version

Perform insert(e) as follows:

If n = 0, then set n to 1. Initialize an array A with length 2,
containing just e itself.

Otherwise (i.e., n ≥ 1), append e to A, and increase n by 1. If A is
full, do the following:

Initialize an array A′ of length d1.5ne.
Copy all the n elements of A over to A′.
Destroy A, and replace it with A′.
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Example

n = 1

n = 2

n = 3

n = 4

n = 5

n = 6

· · · · · ·
n = 8
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Cost Analysis

Lemma: When n ≥ 15, at least n/4 elements must have been
inserted since the last expansion.

Proof: Let x be the number of elements when the last expansion
happened. Hence, n = d1.5xe, meaning that n − x elements have been
inserted since the last expansion. It suffices to prove n − x ≥ n/4 when
n ≥ 15. Towards this purpose, since n − x ≥ 1.5x − x = 0.5x , it suffices
to prove:

0.5x ≥ n/4 = d1.5xe/4

⇔ 2x ≥ d1.5xe

whose correctness can be easily verified for n ≥ 15.
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Cost Analysis

Suppose that the array expansion occurs when A is full with n elements,
and that expansion takes c · n time. When n ≤ 15, cn = O(1). For
n > 15,

There were n/4 insertions have taken place since the previous
expansion.

Each of those insertions bears additional cn
n/4 = 4c = O(1) cost.
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The Stack-with-Array Problem

Push

We can perform push(e) in the same way as an insertion in the dynamic
array problem.

Pop

We say that A is sparse if its length is at least 2, and the number
of integers therein drops below 4/9 of its length.

Perform pop as follows:

Return the last element of A, and decrease n by 1. If A is sparse,

shrink the array as follows:

Initialize an array A′ of length d1.5ne.
Copy all the elements of A over to A′.
Destroy A, and replace it with A′.
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Example

n = 8, Pop

n = 7, Pop

· · · · · ·
n = 5, Pop

· · · · · ·
n = 3, Pop
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Cost Analysis

The analysis follows the same ideas explained in the lecture. The crux is
to show that, when an overhaul (i.e., expansion/shrinking) happens, Ω(n)
operations must have occurred since the last overhaul. As each overhaul
takes O(n) time, each of those operations is amortized O(1) time.
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The Queue-with-Array Problem

Let S be a multi-set integers that grows with time. At the beginning, S
is empty. We must support the following queue operations:

En-queue(e): Inserts an integer e into S .

De-queue: Removes the least recently inserted element from S .

At any moment, let m be the number of elements in S . We want to store
all the elements of S in an array A satisfying:

1 A has length O(m).

2 A[1] is the least recently inserted element, A[2] the second least
recently inserted, · · · , A[m] the most recently inserted.

We will denote by n the number of operations processed so far.
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The Queue-with-Array Problem

We will explain how to maintain a dynamic array that ensures minimum

occupancy of 50%. You may apply the techniques explained earlier to

increase the minimum occupancy at the tradeoff of higher amortized

update cost.
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The Queue-with-Array Problem

En-queue

Perform en-queue(e) as follows:

If m = 0, then set m to 1. Initialize an array A with length 2,
containing just e itself.

Otherwise (i.e., m ≥ 1), append e to A, and increase m by 1. If A is
full, do the following:

Initialize an array A′ of length 2m.
Copy all the m elements of A over to A′.
Destroy A, and replace it with A′.
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The Queue-with-Array Problem

De-queue

Perform de-queue as follows:

Return the first element of A, and decrease m by 1. If A is sparse,
shrink the array as follows:

Initialize an array A′ of length 2m.
Copy all the elements of A over to A′.
Destroy A, and replace it with A′.

We say that A is sparse if the number of integers therein is equal
to 1/4 of its length.
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Example

Next, we use the algorithm to perform 11 en-queues and 9 de-queues on
an initially empty queue.

n = 1, En-queue

n = 2, En-queue

· · · · · ·

n = 4, En-queue

· · · · · ·

n = 8, En-queue

· · · · · ·

n = 11, En-queue
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Example

n = 12, De-queue

...

n = 17, De-queue

n = 18, De-queue

n = 19, De-queue

n = 20, De-queue
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Cost Analysis

size s

size s/2

size 2s

Array Expansion

size s

size s/4

size s/2

Array Shrinking (take the array as circular)

The cost of expansion is at most c1 · s for some constant c1. By charging
the cost over the s/2 en-queue operations as indicated above, each
operation bears at most 2c1 cost.

The cost of shrinking is at most c2 · s for some constant c2. By charging
the cost over the s/4 de-queue operations as indicated above, each
operation bears at most 4c2 cost.

Hence, performing any sequence of operations using O(n) time in total,

and each operation (either an en-queue or a de-queue) is guaranteed to

cost O(1) amortized time.
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