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Introduction

Last week, in the lectures, we have learned the k-selection problem and
solved it in O(n) expected time by making use of randomization. The
k-selection algorithm discussed in the class is easy to understand and
analyze, but less efficient in practice.

In this tutorial, we will introduce a simpler and faster randomized

algorithm (but with a more tedious analysis) and discuss another

interesting problem related to k-selection.
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A ”simpler” randomized algorithm

1 Randomly pick an integer v from S .

2 Get the rank of v , let it be r .

3 if r = k , return v , otherwise:

3.1 if r > k , produce an array S ′ containning all the integers of S
strictly smaller than v . Recurse on S ′ by finding the k-th smallest
element in S ′.

3.2 if r < k, produce an array S ′ containning all the integers of S
strictly larger than v . Recurse on S ′ by finding the (k − r)-th
smallest element in S ′.
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Example

Consider that we want to find the 10-th smallest element from a set S of
12 elements:

17 26 38 28 41 72 83 88 5 9 12 35

Suppose that the v we randomly choose is 28, whose rank is 6. Since
6 < 10, we generate an array S ′ with only the elements larger than 28:

38 41 72 83 88 35

Then we can just recurse by finding the 4-th (k − r = 10− 6 = 4)

smallest element in this arrary S ′.
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Remark

The above algorithm is procedurally simpler than the one we taught in
the class, and is faster in practice too. It, however, is less interesting in
two ways:

1 Its analysis is more complicated (in the mundane way).

2 It does not illustrate the ”if-failed-then-repeat” technique.

CSCI2100, The Chinese University of Hong Kong More on k-selection



k-selection on two sorted arrays

Problem: Let X [1...n] and Y [1..m] be two arrays, both sorted in
ascending order. We want to find the k-th smallest of the n + m
elements where 1 ≤ k ≤ n + m. Our algorithm has to end in
O(log n + logm) time.

Example: X : 2 3 6 7 9 12 Y : 1 4 8 10 11

Suppose k = 5, then our algorithm should output 6, since
the final sorted array is:

1 2 3 4 6 7 8 9 10 11 12
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Solution

We solve this problem by resursion.

Base case

The base case happens when either n or m is 1. Without loss of
genarality, assume that m = 1 (Otherwise, swap the roles of X and Y ).

If k = n + 1, then return max{X [n],Y [1]}.

Otherwise(i.e., k ≤ n):

If X [k] < Y [1], then return X [k].
Otherwise, return max{X [k − 1],Y [1]}.

Obviously, the base case can be solved in O(1) time.
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Reduce case

Take:

1 The median element u of X , namely, u = X [s] where s = bn/2c
2 The median element v of Y , namely, v = Y [t] where t = bm/2c

Without loss of genarality, we assume v ≤ u (Otherwise, swap the roles
of X and Y ). We distinguish two cases:

Case 1: s + t ≥ k: None of the elements in X [s + 1, ...n] can
possibly be the result. We recurse by searching for the k-th smallest
element of the s + m elements in X [1...s] and Y [1...m].

Case 2: s + t < k: None of the elements in Y [1, ...t] can possibly
be the result. We recurse by searching for the (k − t)-th smallest
element of the n + m − t elements in X [1...n] and Y [t + 1...m].
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Example

Input X : 2 8 11 17 20 33 35 Y : 1 4 7 28 30 43 k = 5

Where n = 7, m = 6, s = bn/2c = 3, t = bm/2c = 3.

We take u = X [s] = 11, v = Y [t] = 7, and u > v .

Since k = 5, s + t = 6 > k , which followes case 1, then none of the
elements in X [4, ...7] can possibly be the result. We recurse by searching
for the 5-th smallest element of the 9 elements in X [1...3] and Y [1...6],
i.e.

New Input 1 Y : 2 8 11 X : 1 4 7 28 30 43 k = 5
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Example

New Input 1 Y : 2 8 11 X : 1 4 7 28 30 43 k = 5

Where n = 6, m = 3, s = bn/2c = 3, t = bm/2c = 1.

We take u = X [s] = 7, v = Y [t] = 2, and u > v .

Since k = 5, s + t = 4 < k , which followes case 2, then Y [1] cannot
possibly be the result. We recurse by searching for the 5− 1 = 4-th
smallest element of the 8 elements in X [1...6] and Y [2...3], i.e.

New Input 2 X : 8 11 Y : 1 4 7 28 30 43 k = 4
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Example

New Input 2 X : 8 11 Y : 1 4 7 28 30 43 k = 4

Where n = 2, m = 6, s = bn/2c = 1, t = bm/2c = 3.

We take u = X [s] = 8, v = Y [t] = 7, and u > v .

Since k = 4, s + t = 4 = k , which followes case 1, then X [2] cannot
possibly be the result. We recurse by searching for the 4-th smallest
element of the 7 elements in X [1] and Y [1...6], i.e.

New Input 3 Y : 8 X : 1 4 7 28 30 43 k = 4
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Example

New Input 3 Y : 8 X : 1 4 7 28 30 43 k = 4

This comes to be the base case, since k = 4 < n = 6,
X [k] = X [4] = 28 > Y [1], we return max{X [k − 1],Y [1]} = 8.
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Cost Analysis

From the above example, we can see that for each recursion, we shrink
either X or Y by half. Overall, the above shrinking can happen at most
log2 m + log2 n times before reaching the base case.

It thus follows that the entire algorithm finishes in O(log n+ logm) time.
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