
More on k-selection

CSCI2100 Tutorial 5

Jianwen Zhao

Department of Computer Science and Engineering
The Chinese University of Hong Kong

Adapted from the slides of the previous offerings of the course

CSCI2100, The Chinese University of Hong Kong More on k-selection



Introduction

Last week, in the lectures, we have learned the k-selection problem and
solved it in O(n) expected time by making use of randomization. The
k-selection algorithm discussed in the class is easy to understand and
analyze, but less efficient in practice.

In this tutorial, we will introduce a simpler and faster randomized

algorithm (but with a more tedious analysis) and discuss another

interesting problem related to k-selection.

CSCI2100, The Chinese University of Hong Kong More on k-selection



A ”simpler” randomized algorithm

1 Randomly pick an integer v from S .

2 Get the rank of v , let it be r .

3 if r = k , return v , otherwise:

3.1 if r > k , produce an array S ′ containning all the integers of S
strictly smaller than v . Recurse on S ′ by finding the k-th smallest
element in S ′.

3.2 if r < k, produce an array S ′ containning all the integers of S
strictly larger than v . Recurse on S ′ by finding the (k − r)-th
smallest element in S ′.

CSCI2100, The Chinese University of Hong Kong More on k-selection



Example

Consider that we want to find the 10-th smallest element from a set S of
12 elements:

17 26 38 28 41 72 83 88 5 9 12 35

Suppose that the v we randomly choose is 28, whose rank is 6. Since
6 < 10, we generate an array S ′ with only the elements larger than 28:

38 41 72 83 88 35

Then we can just recurse by finding the 4-th (k − r = 10− 6 = 4)

smallest element in this arrary S ′.

CSCI2100, The Chinese University of Hong Kong More on k-selection



Remark

The above algorithm is procedurally simpler than the one we taught in
the class, and is faster in practice too. It, however, is less interesting in
two ways:

1 Its analysis is more complicated (in the mundane way).

2 It does not illustrate the ”if-failed-then-repeat” technique.

CSCI2100, The Chinese University of Hong Kong More on k-selection



k-selection on two sorted arrays

Problem: Let X [1...n] and Y [1..m] be two arrays, both sorted in
ascending order. We want to find the k-th smallest of the n + m
elements where 1 ≤ k ≤ n + m. Our algorithm has to end in
O(log n + logm) time.

Example: X : 2 3 6 7 9 12 Y : 1 4 8 10 11

Suppose k = 5, then our algorithm should output 6, since
the final sorted array is:

1 2 3 4 6 7 8 9 10 11 12

CSCI2100, The Chinese University of Hong Kong More on k-selection



Solution

We solve this problem by resursion.

Base case

The base case happens when either n or m is 1. Without loss of
genarality, assume that m = 1 (Otherwise, swap the roles of X and Y ).

If k = n + 1, then return max{X [n],Y [1]}.

Otherwise(i.e., k ≤ n):

If X [k] < Y [1], then return X [k].
Otherwise, return max{X [k − 1],Y [1]}.

Obviously, the base case can be solved in O(1) time.

CSCI2100, The Chinese University of Hong Kong More on k-selection



Reduce case

Take:

1 The median element u of X , namely, u = X [s] where s = bn/2c
2 The median element v of Y , namely, v = Y [t] where t = bm/2c

Without loss of genarality, we assume v ≤ u (Otherwise, swap the roles
of X and Y ). We distinguish two cases:

Case 1: s + t ≥ k: None of the elements in X [s + 1, ...n] can
possibly be the result. We recurse by searching for the k-th smallest
element of the s + m elements in X [1...s] and Y [1...m].

Case 2: s + t < k: None of the elements in Y [1, ...t] can possibly
be the result. We recurse by searching for the (k − t)-th smallest
element of the n + m − t elements in X [1...n] and Y [t + 1...m].

CSCI2100, The Chinese University of Hong Kong More on k-selection



Example

Input X : 2 8 11 17 20 33 35 Y : 1 4 7 28 30 43 k = 5

Where n = 7, m = 6, s = bn/2c = 3, t = bm/2c = 3.

We take u = X [s] = 11, v = Y [t] = 7, and u > v .

Since k = 5, s + t = 6 > k , which followes case 1, then none of the
elements in X [4, ...7] can possibly be the result. We recurse by searching
for the 5-th smallest element of the 9 elements in X [1...3] and Y [1...6],
i.e.

New Input 1 Y : 2 8 11 X : 1 4 7 28 30 43 k = 5

CSCI2100, The Chinese University of Hong Kong More on k-selection



Example

New Input 1 Y : 2 8 11 X : 1 4 7 28 30 43 k = 5

Where n = 6, m = 3, s = bn/2c = 3, t = bm/2c = 1.

We take u = X [s] = 7, v = Y [t] = 2, and u > v .

Since k = 5, s + t = 4 < k , which followes case 2, then Y [1] cannot
possibly be the result. We recurse by searching for the 5− 1 = 4-th
smallest element of the 8 elements in X [1...6] and Y [2...3], i.e.

New Input 2 X : 8 11 Y : 1 4 7 28 30 43 k = 4

CSCI2100, The Chinese University of Hong Kong More on k-selection



Example

New Input 2 X : 8 11 Y : 1 4 7 28 30 43 k = 4

Where n = 2, m = 6, s = bn/2c = 1, t = bm/2c = 3.

We take u = X [s] = 8, v = Y [t] = 7, and u > v .

Since k = 4, s + t = 4 = k , which followes case 1, then X [2] cannot
possibly be the result. We recurse by searching for the 4-th smallest
element of the 7 elements in X [1] and Y [1...6], i.e.

New Input 3 Y : 8 X : 1 4 7 28 30 43 k = 4

CSCI2100, The Chinese University of Hong Kong More on k-selection



Example

New Input 3 Y : 8 X : 1 4 7 28 30 43 k = 4

This comes to be the base case, since k = 4 < n = 6,
X [k] = X [4] = 28 > Y [1], we return max{X [k − 1],Y [1]} = 8.

CSCI2100, The Chinese University of Hong Kong More on k-selection



Cost Analysis

From the above example, we can see that for each recursion, we shrink
either X or Y by half. Overall, the above shrinking can happen at most
log2 m + log2 n times before reaching the base case.

It thus follows that the entire algorithm finishes in O(log n+ logm) time.

CSCI2100, The Chinese University of Hong Kong More on k-selection


