Quick Sort—An In-Place Implementation

Yufei Tao
Department of Computer Science and Engineering
Chinese University of Hong Kong

We talked about quick sort, which finishes in $O\left(n^{2}\right)$ worst case time, and $O(n \log n)$ expected time. This does not seem attractive at all theoretically, given that merge sort can do $O(n \log n)$ in the worst case.

Nevertheless, quick sort is really quick in practice. An important reason is that it allows a simple yet fast "in-place" implementation which reduces the hidden constant in its $O(n \log n)$ complexity. By in-place, we mean that the sorting can be performed entirely in the input array, thus removing the overhead of creating another array and copying the elements back and forth.

Recall:

The Sorting Problem
Problem Input:
A set S of n integers is given in an array of length n.

Goal:

Design an algorithm to store S in an array where the elements have been arranged in ascending order.

Recall:

Quick Sort
We will denote the input array as A, and describe the algorithm by recursion.

Base Case. If $n=1$, return directly.

Reduce. Otherwise, the algorithm runs the following steps:
(1) Randomly pick an integer p in A-call it the pivot.

- This can be done in $O(1)$ time using RANDOM $(1, n)$.
(2) Re-arrange the integers in an array A^{\prime} such that
- All the integers smaller than p are positioned before p in A^{\prime}.
- All the integers larger than p are positioned after p in A^{\prime}.
(3) Sort the part of A^{\prime} before p recursively.
(c) Sort the part of A^{\prime} after p recursively.

Example

After Step 1 (suppose that 26 was randomly picked as the pivot):

After Step 2:

| 9 | p | 12 | | |
| :--- |

After Steps 3 and 4:

We will discuss how to perform Step 2.

Quick Sort—Step 2 (Distributing)

We have an array A, and a pivot v stored at $A[p]$. We want to move every element smaller (or larger) than v to the left (or right, resp.) of v.

Quick Sort—Step 2 (Distributing)

Record v separately and erase $A[p]$ (now there is a "gap" at $A[p]$). At any moment, maintain pointers i, j. In the outset, $i=1, j=n$.

- Keep moving i to the right until $i=p$ or $A[i] \geq v$
- Keep moving j to the left until $j=p$ or $A[j] \leq v$
- If neither i nor j is at p, $\operatorname{swap} A[i], A[j]$, and repeat.

When i or j is p, we enter a second phase as explained on the next slide.

Quick Sort—Step 2 (Distributing)

Now either i or j is pointing to a gap.

- If i has the gap:
- Move j to the left until $j=i$ or $A[j] \leq v$.
- If $i \neq j$, move $A[j]$ to $A[i]$, and erase $A[j]$. Now j has the gap. Repeat
- If j has the gap:
- Move i to the right until $i=j$ or $A[i]<v$.
- If $i \neq j$, move $A[i]$ to $A[j]$, and erase $A[i]$. Now i has the gap. Repeat

When $i=j$, fill in $A[i]=v$ and finish.

Example

