
Quick Sort—An In-Place Implementation

Yufei Tao

Department of Computer Science and Engineering
Chinese University of Hong Kong

Yufei Tao Quick Sort—An In-Place Implementation



We talked about quick sort, which finishes in O(n2) worst case time, and
O(n log n) expected time. This does not seem attractive at all
theoretically, given that merge sort can do O(n log n) in the worst case.

Nevertheless, quick sort is really quick in practice. An important reason is

that it allows a simple yet fast “in-place” implementation which reduces

the hidden constant in its O(n log n) complexity. By in-place, we mean

that the sorting can be performed entirely in the input array, thus

removing the overhead of creating another array and copying the

elements back and forth.

Yufei Tao Quick Sort—An In-Place Implementation



Recall:

The Sorting Problem

Problem Input:

A set S of n integers is given in an array of length n.

Goal:

Design an algorithm to store S in an array where the elements have been

arranged in ascending order.

Yufei Tao Quick Sort—An In-Place Implementation



Recall:

Quick Sort

We will denote the input array as A, and describe the algorithm by
recursion.

Base Case. If n = 1, return directly.

Reduce. Otherwise, the algorithm runs the following steps:

1 Randomly pick an integer p in A—call it the pivot.

This can be done in O(1) time using RANDOM(1, n).

2 Re-arrange the integers in an array A′ such that

All the integers smaller than p are positioned before p in A′.
All the integers larger than p are positioned after p in A′.

3 Sort the part of A′ before p recursively.

4 Sort the part of A′ after p recursively.

Yufei Tao Quick Sort—An In-Place Implementation



Example

After Step 1 (suppose that 26 was randomly picked as the pivot):

5 91217 2628 3538 41 20 52686972 8388

p

After Step 2:

289 88175 35 3841 52686972 8312

p

20 26

After Steps 3 and 4:

5 9 12 17 26 28 35 38 4120 52 68 69 72 83 88

p

We will discuss how to perform Step 2.

Yufei Tao Quick Sort—An In-Place Implementation



Quick Sort—Step 2 (Distributing)

We have an array A, and a pivot v stored at A[p]. We want to
move every element smaller (or larger) than v to the left (or right,
resp.) of v .

Yufei Tao Quick Sort—An In-Place Implementation



Quick Sort—Step 2 (Distributing)

Record v separately and erase A[p] (now there is a “gap” at A[p]). At
any moment, maintain pointers i , j . In the outset, i = 1, j = n.

pi j

< v > v

Keep moving i to the right until i = p or A[i ] ≥ v

Keep moving j to the left until j = p or A[j ] ≤ v

If neither i nor j is at p, swap A[i ],A[j ], and repeat.

When i or j is p, we enter a second phase as explained on the next slide.

Yufei Tao Quick Sort—An In-Place Implementation



Quick Sort—Step 2 (Distributing)

Now either i or j is pointing to a gap.

i j

> v

i j

< v

If i has the gap:

Move j to the left until j = i or A[j ] ≤ v .
If i 6= j , move A[j ] to A[i ], and erase A[j ]. Now j has the gap.
Repeat

If j has the gap:

Move i to the right until i = j or A[i ] < v .
If i 6= j , move A[i ] to A[j ], and erase A[i ]. Now i has the gap.
Repeat

When i = j , fill in A[i ] = v and finish.

Yufei Tao Quick Sort—An In-Place Implementation



Example

5 91217 2628 3538 41 20 52686972 8388

pi j

5 9121728 3538 41 20 52686972 8388

pi j

59 121728 35 3841 20 52686972 8388

pi j

289 12175 35 3841 20 52686972 8388

pi j

289 88175 35 3841 20 52686972 8312

i j

289 88175 35 3841 52686972 8312

i j

20

289 88175 35 3841 52686972 8312

ij

20

289 88175 35 3841 52686972 8312

ij

20 26

Yufei Tao Quick Sort—An In-Place Implementation


