## Random Permutation

Yufei Tao<br>Department of Computer Science and Engineering Chinese University of Hong Kong

Earlier we extended the RAM model with one more atomic operator: RANDOM $(x, y)$. This operator allows us to design algorithms with randomization.

Today we will discuss a randomized algorithm for permuting the elements of an array.

## The Random Permutation Problem

We have an array $A$ of $n$ distinct integers, say, $1,2, \ldots, n$. We want to design an algorithm to randomly permute these integers. Namely, when our algorithm finishes, $A$ should be storing a sequence which can be any of the $n$ ! permutations with the same chance.

## Example

Suppose that $A=(1,2,3)$.
We must generate each of the following sequences with probability $1 / 6$ :

- (1, 2, 3)
- $(1,3,2)$
- $(2,1,3)$
- $(2,3,1)$
- $(3,1,2)$
- $(3,2,1)$


## The Algorithm

This problem can be solved in $O(n)$ worst case time by a beautiful 3-line algorithm:

1. for $i=1$ to $n$
2. $x=\operatorname{RANDOM}(1, i)$
3. swap $A[x]$ with $A[i]$

## Example

Consider again $A=(1,2,3)$. We will demonstrate the execution of the algorithm by enumerating all of its possible outcomes.

Notice that the algorithm generates two integers: say $a$ for $i=2$ and $b$ for $i=3$. Specifically, a can take 1 or 2 with the same probability, while $b$ can take 1 , 2 , or 3 with the same probability.

So there are 6 possibilities for the $(a, b)$ combination. Each possibility happens with probability precisely $1 / 6$.

The next slide shows the outcome of each possibility.

## Example

- $(a, b)=(1,1)$. Outcome: $A=(3,1,2)$.
- $(a, b)=(1,2)$. Outcome: $A=(2,3,1)$.
- $(a, b)=(1,3)$. Outcome: $A=(2,1,3)$.
- $(a, b)=(2,1)$. Outcome: $A=(3,2,1)$.
- $(a, b)=(2,2)$. Outcome: $A=(1,3,2)$.
- $(a, b)=(2,3)$. Outcome: $A=(1,2,3)$.

Indeed, $A$ has been randomly permuted - each of the 6 permutations happens with probability $1 / 6$.

## Proof of Correctness

Remark: The proof will not be tested in exams.

We will prove that the algorithm is correct for any value of $n$ by induction. Correctness for $n=1$ is obvious.

Assuming that the algorithm is correct for permuting $n-1$ elements, next we prove that it is also correct for permuting $n$ elements.

## Proof of Correctness

Consider the for-loop with $i=n$. By the inductive assumption, now the first $n-1$ positions of $A$ are storing a random permutation of $1,2, \ldots, n-1$.

That is, at this moment, each of the $(n-1)$ ! permutations is $(A[1], A[2], \ldots, A[n-1])$ with probability exactly $1 /(n-1)$ !.

Due to symmetry, consider any of those ( $n-1$ ) permutations ( $A[1], A[2], \ldots, A[n-1]$ ). The for-loop with $i=n$ will generate each of the following $n$ permutations with the same probability $1 / n$ :

- $(n, A[2], \ldots, A[n-1], A[1])$
- ( $A[1], n, A[3], \ldots, A[n-1], A[2])$
- ...
- $(A[1], \ldots, A[i-1], n, A[i+1] \ldots, A[n-1], A[i])$
- ...
- ( $A[1], \ldots, A[n-1], n)$

It now follows that each of the $n$ ! permutations of $(1,2, \ldots, n)$ is generated with probability precisely $1 / n!$.

