
More on Merge Sort and 
Binary Search

CSCI2100 Tutorial 3
Shangqi Lu

Adapted from the slides of the previous offerings of the course

1 of 17



Outline

• Review merge sort and its variant
• A variant of binary search 

2 of 17



Review - Merge Operation

• Merge 2 sorted arrays into a single sorted array
• For example:

17 28 38 26 41 88

3 of 17



Review - Merge Operation

• Set to be 1
• Compare 17 and 26
• 17 is smaller
• Place 17 into the new array and increase i by 1

17 28 38 26 41 88

17

4 of 17



Review - Merge Operation

• Compare 28 and 26
• 26 is smaller
• Place 26 into the new array and increase j by 1

17 28 38 26 41 88

17 26

5 of 17



Review - Merge Operation

• Compare 28 and 41
• 28 is smaller
• Place 28 into the new array and increase i by 1

17 28 38 26 41 88

17 26 28

6 of 17



Review - Merge Operation

• Continue the above process until we’ve placed all 
elements into the new array

• Single pass over all the input elements
• Time complexity: 

17 28 38 26 41 88

17 26 28 38 41 88

7 of 17



Bottom-up Merge Sort
38 28 88 17 26 41 72 83 69 47 12 68 5 52 35 9

28 38 17 88 26 41 72 83 47 69 12 68 5 52 9 35

17 28 38 88 26 41 72 83 12 47 68 69 5 9 35 52

17 26 28 38 41 72 83 88 5 9 12 35 47 52 68 69

merge merge merge merge merge merge merge merge

5 9 12 17 26 28 35 38 41 47 52 68 69 72 83 88

1st Pass
Time cost: 

2nd Pass
Time cost: 

3rd Pass
Time cost: 

4th Pass
Time cost: 

ଶ pass in total, cost for each pass, time complexity is 8 of 17



Exercise: Modified Merge Sort

• Regular Exercise 3 Problem 6*
• A variant of merge sort

• If then return immediately
• Otherwise set 
• Recursively sort and , respectively
• Merge and into one sorted array

• Prove the time complexity is 

9 of 17



Example of Modified Merge Sort

17 26 28 38 41 88 72 83 69 47 12 68 5 52 35 9

sort recursively

38 28 88 17 26 41 5 9 12 35 47 52 68 69 72 83

sort recursively

38 28 88 17 26 41 72 83 69 47 12 68 5 52 35 9

5 9 12 17 26 28 35 38 41 47 52 68 69 72 83 88

Merge and 

10 of 17



Solution

• Let be the worst case time
•

•

• Want to prove 
• This can be done using the substitution method –

see the course website for solution (reg ex list 3). 

11 of 17



A Variant of Binary Search

• Instead of comparing the target value with the 
middle element, we compare the target with the 

th element each time.
• For example, we want to find the value 13 from the 

following sorted sequence

12 of 17

2 3 5 8 13 21 34 55



Time Complexity

•
elements are left.

•
•

•

• Solving the recurrence gives .

13 of 17



Time Complexity

• What if we compare the target with the th
element?

• The time complexity is also !
• Try verifying this by yourself.

14 of 17



A Bonus Problem: Closest Pair

• Problem Input:
• Two unsorted sequences A and B with m and n integers
• n < m

• Goal: Find a pair , x from A and y from B, with 
the minimum .

16 of 17

1 20 9 23 2 20

11 8 7 12 13

Sequence A

Sequence B



A Bonus Problem: Closest Pair

17 of 17

1 20 9 23 2 20

11 8 7 12 13

Sequence A

Sequence B

• This problem can be solved in .
• Sort the shorter sequence.
• Then use elements of the longer sequence to perform 

binary searches.

• Note: is better than when 
n << m.


