More on Merge Sort and Binary Search
 CSCI2100 Tutorial 3
 Shangqi Lu

Adapted from the slides of the previous offerings of the course

Outline

- Review merge sort and its variant
- A variant of binary search

Review - Merge Operation

- Merge 2 sorted arrays into a single sorted array
- For example:

Review - Merge Operation

- Set i, j to be 1
- Compare 17 and 26
- 17 is smaller
- Place 17 into the new array and increase i by 1

Review - Merge Operation

- Compare 28 and 26
- 26 is smaller
- Place 26 into the new array and increase j by 1

Review - Merge Operation

- Compare 28 and 41
- 28 is smaller
- Place 28 into the new array and increase i by 1

17	26	28			

Review - Merge Operation

- Continue the above process until we've placed all elements into the new array
- Single pass over all the input elements
- Time complexity: $O(n)$

Bottom-up Merge Sort

Exercise: Modified Merge Sort

- Regular Exercise 3 Problem 6*
- A variant of merge sort
- If $n=1$ then return immediately
- Otherwise set $k=\lceil n / 3\rceil$
- Recursively sort $A[1 \ldots k]$ and $A[k+1 \ldots n]$, respectively
- Merge $A[1 \ldots k]$ and $A[k+1 \ldots n]$ into one sorted array
- Prove the time complexity is $O(n \log n)$

Example of Modified Merge Sort

38																		
	28	88	17	26	41	72	83			47	12	68	5	52	35	9		
\uparrow																		
$n / 3$																		

38	28	88	17	26	41	5	9	12	35	47	52	68	69	72	83	

Merge $A[1 \ldots k]$ and $A[k+1 \ldots n]$

5	9	12	17	26	28	35	38	41	47	52	68	69	72	83	88	

Solution

- Let $f(n)$ be the worst case time
- $f(1)=O(1)$
- $f(n) \leq f\left(\left\lceil\frac{n}{3}\right\rceil\right)+f\left(\left\lceil\frac{2 n}{3}\right\rceil\right)+O(n)$
- Want to prove $f(n)=O(n \log n)$
- This can be done using the substitution method see the course website for solution (reg ex list 3).

A Variant of Binary Search

- Instead of comparing the target value with the middle element, we compare the target with the $\left\lceil\frac{n}{3}\right\rceil$ th element each time.
- For example, we want to find the value 13 from the following sorted sequence

Time Complexity

- In the worst case, after each comparison, twothird of the active elements are left.
- Solution
- $T(1)=O(1)$
- $T(n) \leq T\left(\frac{2 n}{3}\right)+O(1)$
- Solving the recurrence gives $T(n)=O(\log n)$.

Time Complexity

- What if we compare the target with the $\left\lceil\frac{n}{300}\right\rceil$ th element?
- The time complexity is also $O(\log n)$!
- Try verifying this by yourself.

A Bonus Problem: Closest Pair

- Problem Input:
- Two unsorted sequences A and B with m and n integers
- $\mathrm{n}<\mathrm{m}$
- Goal: Find a pair $(x, y), \mathrm{x}$ from A and y from B , with the minimum $|x-y|$.

| Sequence A | 1 20 9 23 2 | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | | |
| Sequence B | 11 | 8 | 7 | 12 | 13 |

A Bonus Problem: Closest Pair

- This problem can be solved in $O(m \log n)$.
- Sort the shorter sequence.
- Then use elements of the longer sequence to perform binary searches.
- Note: $O(m \log n)$ is better than $O(m \log m)$ when $\mathrm{n} \ll \mathrm{m}$.

| Sequence A | 1 20 9 23 2 | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Sequence B | 11 | 8 | 7 | 12 | 13 |

