Side Talk: Memory Management in Merge Sort

Yufei Tao

Department of Computer Science and Engineering Chinese University of Hong Kong

Yufei Tao Side Talk: Memory Management in Merge Sort

In the class, we discussed a recursive algorithm named merge sort. In this talk, we will discuss how the operating system allocates memory as the algorithm makes recursive calls.

Recall:

Merge Sort

Inductive Case. The algorithm runs in three steps:

- Recursively sort the first half of the array S.
- Recursively sort the second half of the array.
- Intersection of the array into the final sorted sequence.

Input:

38 28 88 17 26 41 72 83 69 47 12 68 5 52 35 9

First step, sort the first half of the array by recursion.

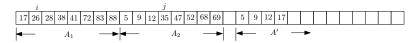
Second step, sort the second half of the array by recursion:

Third step, merge the two halves.

5	9	12	17	26	28	35	38	41	47	52	68	69	72	83	88								\square
											1											1	

• • = • • = •

We can implement the merge step (i.e., Step 3 of Slide 3) as follows:

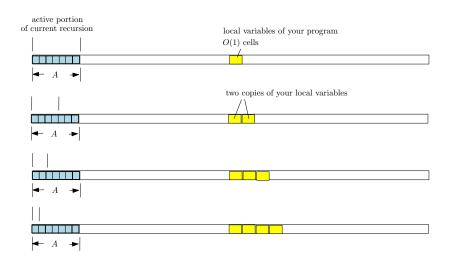

- Let A be the input array
- Let A₁ be the first half (already sorted) of A
- Let A_2 be the second half (already sorted) of A
- Create another array A' of length n
- Use A' to perform the merging of A_1 and A_2
- Copy A' to A
- Delete A' (i.e., freeing up memory)

Create array A':

Appending 5, 9, 12, 17 to A, and so on:

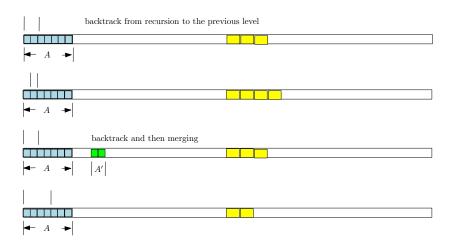
э

At the end of merging:

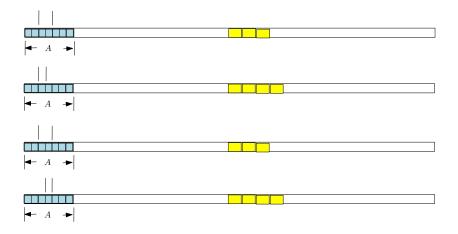

Copy A' to A, and destroy A':

5	9	12	17	26	28	35	38	41	47	52	68	69	72	83	88							

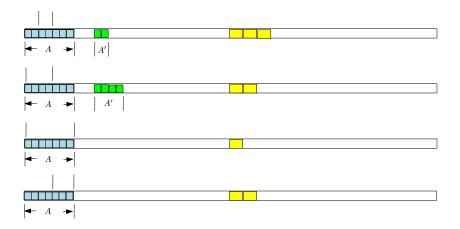
3 x 3


Next, we will demonstrate the entire history of memory allocation for using the algorithm to sort 7 elements.

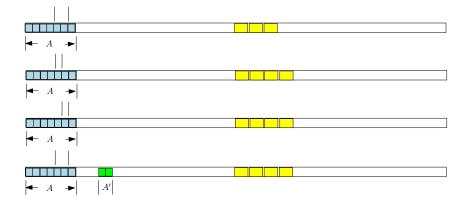
∃ ► < ∃ ►</p>

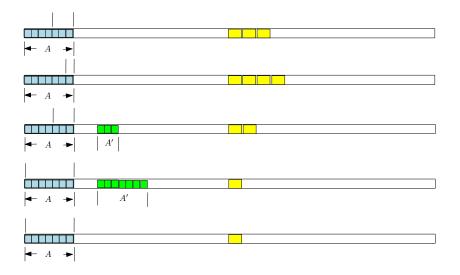

< ロ > < 回 > < 回 > < 回 > < 回 > <</p>

∃ 990



<ロ> (日) (日) (日) (日) (日)


æ


◆□▶ ◆□▶ ◆三▶ ◆三▶ → 三 - のへで

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ● ● ●

◆□▶ ◆□▶ ◆三▶ ◆三▶ → 三 - のへで

◆□▶ ◆□▶ ◆三▶ ◆三▶ → 三 - のへで