Exercises on the Growth of Functions

CSCI2100 Tutorial 2

Jianwen Zhao
Department of Computer Science and Engineering
The Chinese University of HongKong

Adapted from the slides of the previous offerings of the course

Introduction

Last week, we have learned two different ways to decide whether one function $f(n)$ grows faster than another $g(n)$:

- The first one achieves the purpose by finding appropriate "constants c_{1}, c_{2}.
- The second is by inspecting the ratio $\frac{f(n)}{g(n)}$ as $n \rightarrow \infty$.

In this tutorial, we will apply both methods through some exercises.

Exercise 1

Let $f(n)=10 n+5$ and $g(n)=n^{2}$. Prove $f(n)=O(g(n))$ and $g(n) \neq O(f(n))$.

Exercise 1

Let $f(n)=10 n+5$ and $g(n)=n^{2}$. Prove $f(n)=O(g(n))$ and $g(n) \neq O(f(n))$.

Direction 1: Constant Finding

$f(n)=O(g(n))$, if there exist two positive constants c_{1} and c_{2} such that $f(n) \leq c_{1} \cdot g(n)$ holds for all $n \geq c_{2}$.

Exercise 1

Let $f(n)=10 n+5$ and $g(n)=n^{2}$. Prove $f(n)=O(g(n))$ and $g(n) \neq O(f(n))$.

Direction 1: Constant Finding

$\overline{\text { Proof of } f(n)=O(g(n))}$
Our mission is to find c_{1}, c_{2} to make $f(n) \leq c_{1} \cdot g(n)$ hold for all $n \geq c_{2}$. Remember: we do not need to find the smallest c_{1}, c_{2}; instead, it suffices to obtain any c_{1}, c_{2} that can do the job. Indeed, we will often go for some "easy" selections that can simplify derivation.

Exercise 1

Let $f(n)=10 n+5$ and $g(n)=n^{2}$. Prove $f(n)=O(g(n))$ and $g(n) \neq O(f(n))$.

Direction 1: Constant Finding

$\overline{\text { Proof of } f(n)=O(g(n))}$

$$
\begin{array}{ll}
& 10 n+5 \leq c_{1} \cdot n^{2} \\
\Leftrightarrow & 5(2 n+1) \leq c_{1} \cdot n^{2} \quad\left(\text { let } c_{1}=5\right) \\
\Leftrightarrow & 2 n+1 \leq n^{2} \\
\Leftrightarrow & 2 \leq(n-1)^{2} \\
\Leftrightarrow & 3 \leq n
\end{array}
$$

Hence, it suffices to set $c_{2}=3$.

Exercise 1

Let $f(n)=10 n+5$ and $g(n)=n^{2}$. Prove $f(n)=O(g(n))$ and $g(n) \neq O(f(n))$.

Direction 1: Constant Finding

$\overline{\text { Proof of } g(n) \neq O(f(n))}$
Let us prove this by contradiction. Suppose, on the contrary, that $g(n)=O(f(n))$. This means the existence of constants c_{1}, c_{2} such that, we have for all $n \geq c_{2}$

$$
\begin{array}{ll}
& n^{2} \leq c_{1} \cdot(10 n+5) \\
\Rightarrow \quad & n^{2} \leq c_{1} \cdot 20 n \\
\Leftrightarrow & n \leq 20 c_{1}
\end{array}
$$

which cannot always hold for all $n \geq c_{2}$. This completes the proof.

Exercise 1

Let $f(n)=10 n+5$ and $g(n)=n^{2}$. Prove $f(n)=O(g(n))$ and $g(n) \neq O(f(n))$.

Direction 2: Inspecting $\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}$
$\overline{\text { Proof of } f(n)=O(g(n))}$

$$
\lim _{n \rightarrow \infty} \frac{10 n+5}{n^{2}}=\lim _{n \rightarrow \infty} \frac{10+5 / n}{n}=0
$$

Hence, $f(n)=O(g(n))$.

Exercise 1

Let $f(n)=10 n+5$ and $g(n)=n^{2}$. Prove $f(n)=O(g(n))$ and $g(n) \neq O(f(n))$.

Direction 2: Inspecting $\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}$
$\overline{\text { Proof of } g(n) \neq O(f(n))}$

$$
\lim _{n \rightarrow \infty} \frac{n^{2}}{10 n+5}=\infty
$$

Hence, $g(n) \neq O(f(n))$.

Exercise 2

Let $f(n)=5 \log _{2} n$ and $g(n)=\sqrt{n}$. Prove $f(n)=O(g(n))$ and $g(n) \neq O(f(n))$.

Direction 1: Constant Finding

$\overline{\text { Proof of } f(n)=O(g(n))}$
Setting $c_{1}=5$, we want:

$$
\begin{array}{ll}
& 5 \log _{2} n \leq 5 \cdot \sqrt{n} \\
\Leftrightarrow \quad & \log _{2} n \leq \sqrt{n}
\end{array}
$$

Hence, it suffices to set $c_{2}=64$.

Direction 1: Constant Finding
$\overline{\text { Proof of } g(n) \neq O(f(n))}$
We prove this by contradiction. Suppose that $g(n)=O(f(n))$. It implies that there exist constants c_{1}, c_{2} such that for all $n \geq c_{2}$, we have

$$
\begin{array}{ll}
& \sqrt{n} \leq c_{1} \cdot 5 \cdot \log _{2} n \\
\Leftrightarrow \quad & \frac{\sqrt{n}}{\log _{2} n} \leq 5 c_{1}
\end{array}
$$

which cannot always hold for all $n \geq c_{2}$. This completes the proof.

Direction 2: Inspecting $\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}$
$\overline{\text { Proof of } f(n)=O(g(n))}$

$$
\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=\lim _{n \rightarrow \infty} \frac{5 \log _{2} n}{\sqrt{n}}=0
$$

Thus, we have $f(n)=O(g(n))$.
$\overline{\text { Proof of } g(n) \neq O(f(n))}$.

$$
\lim _{n \rightarrow \infty} \frac{g(n)}{f(n)}=\lim _{n \rightarrow \infty} \frac{\sqrt{n}}{5 \log _{2} n}=\infty
$$

Hence, $g(n) \neq O(f(n))$.

Exercise 3

Given that $f(n)=O(g(n))$, prove $\sqrt{f(n)}=O(\sqrt{g(n)})$.

Direction 1: Constant Finding

Since $f(n)=O(g(n))$ implies the existence of constants c_{1} and c_{2} such that $f(n) \leq c_{1} \cdot g(n)$ holds for all $n \geq c_{2}$.

Thus:

$$
\sqrt{f(n)} \leq \sqrt{c_{1} \cdot g(n)}=\sqrt{c_{1}} \cdot \sqrt{g(n)}
$$

holds for all $n \geq c_{2}$.

Therefore, by setting $c_{1}^{\prime}=\sqrt{c_{1}}$ and $c_{2}^{\prime}=c_{2}$, we have $\sqrt{f(n)}=O(\sqrt{g(n)})$.

Direction 2: Inspecting $\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}$
Since $f(n)=O(g(n))$, we have $\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=c$, where c is some constant.

The above implies that:

$$
\lim _{n \rightarrow \infty} \frac{\sqrt{f(n)}}{\sqrt{g(n)}}=\lim _{n \rightarrow \infty} \sqrt{\frac{f(n)}{g(n)}}=\sqrt{\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}}=\sqrt{c}
$$

Therefore, $\sqrt{f(n)}=O(\sqrt{g(n)})$.
Note that in this proof we assume that $\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}$ exists, the same assumption holds in the following exercise.

Exercise 4

Consider functions of $n: f_{1}(n), f_{2}(n), g_{1}(n)$ and $g_{2}(n)$ such that:

$$
f_{1}(n)=O\left(g_{1}(n)\right) \text { and } f_{2}(n)=O\left(g_{2}(n)\right)
$$

Prove $f_{1}(n)+f_{2}(n)=O\left(g_{1}(n)+g_{2}(n)\right)$.

Direction 1: Constant Finding

Since $f_{1}(n)=O\left(g_{1}(n)\right)$, there exist constants c_{1} and c_{2} such that $f_{1}(n) \leq c_{1} \cdot g_{1}(n)$ holds for all $n \geq c_{2}$.

Similarly, $f_{2}(n)=O\left(g_{2}(n)\right)$ implies the existence of constants c_{1}^{\prime} and c_{2}^{\prime} such that $f_{2}(n) \leq c_{1}^{\prime} \cdot g_{2}(n)$ holds for all $n \geq c_{2}^{\prime}$.

Thus:

$$
f_{1}(n)+f_{2}(n) \leq c_{1} \cdot g_{1}(n)+c_{1}^{\prime} \cdot g_{2}(n) \leq \max \left\{c_{1}, c_{1}^{\prime}\right\} \cdot\left(g_{1}(n)+g_{2}(n)\right)
$$

for all $n \geq \max \left\{c_{2}, c_{2}^{\prime}\right\}$.

Therefore, $f_{1}(n)+f_{2}(n)=O\left(g_{1}(n)+g_{2}(n)\right)$.

Direction 2: Inspecting $\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}$
Since $f_{1}(n)=O\left(g_{1}(n)\right)$, we have $\lim _{n \rightarrow \infty} \frac{f_{1}(n)}{g_{1}(n)}=c$ for some constant c.
Similarly, $f_{2}(n)=O\left(g_{2}(n)\right)$ indicates $\lim _{n \rightarrow \infty} \frac{f_{2}(n)}{g_{2}(n)}=c^{\prime}$ for some constant c^{\prime}.

This leads to:

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{f_{1}(n)+f_{2}(n)}{g_{1}(n)+g_{2}(n)} & =\lim _{n \rightarrow \infty} \frac{f_{1}(n)}{g_{1}(n)+g_{2}(n)}+\lim _{n \rightarrow \infty} \frac{f_{2}(n)}{g_{1}(n)+g_{2}(n)} \\
& \leq \lim _{n \rightarrow \infty} \frac{f_{1}(n)}{g_{1}(n)}+\lim _{n \rightarrow \infty} \frac{f_{2}(n)}{g_{2}(n)} \\
& \leq c+c^{\prime}
\end{aligned}
$$

Therefore, $f_{1}(n)+f_{2}(n)=O\left(g_{1}(n)+g_{2}(n)\right)$.

