Exercises on the Growth of Functions

CSCI2100 Tutorial 2

Jianwen Zhao

Department of Computer Science and Engineering
The Chinese University of HongKong

Adapted from the slides of the previous offerings of the course

Introduction

Last week, we have learned two different ways to decide whether one function f(n) grows faster than another g(n):

- The first one achieves the purpose by finding appropriate "constants c_1, c_2 ".
- The second is by inspecting the ratio $\frac{f(n)}{g(n)}$ as $n \to \infty$.

In this tutorial, we will apply both methods through some exercises.

Let f(n) = 10n + 5 and $g(n) = n^2$. Prove f(n) = O(g(n)) and $g(n) \neq O(f(n))$.

Let f(n) = 10n + 5 and $g(n) = n^2$. Prove f(n) = O(g(n)) and $g(n) \neq O(f(n))$.

Direction 1: Constant Finding

f(n) = O(g(n)), if there exist two positive constants c_1 and c_2 such that $f(n) \le c_1 \cdot g(n)$ holds for all $n \ge c_2$.

Let f(n) = 10n + 5 and $g(n) = n^2$. Prove f(n) = O(g(n)) and $g(n) \neq O(f(n))$.

Direction 1: Constant Finding

Proof of
$$f(n) = O(g(n))$$

Our mission is to find c_1, c_2 to make $f(n) \le c_1 \cdot g(n)$ hold for all $n \ge c_2$. Remember: we do not need to find the smallest c_1, c_2 ; instead, it suffices to obtain any c_1, c_2 that can do the job. Indeed, we will often go for some "easy" selections that can simplify derivation.

Let f(n) = 10n + 5 and $g(n) = n^2$. Prove f(n) = O(g(n)) and $g(n) \neq O(f(n))$.

Direction 1: Constant Finding

Proof of f(n) = O(g(n))

$$10n + 5 \le c_1 \cdot n^2$$

$$\Leftrightarrow 5(2n+1) \le c_1 \cdot n^2 \quad (\text{let } c_1 = 5)$$

$$\Leftrightarrow 2n+1 \le n^2$$

$$\Leftrightarrow 2 \le (n-1)^2$$

$$\Leftarrow 3 \le n$$

Hence, it suffices to set $c_2 = 3$.

Let f(n) = 10n + 5 and $g(n) = n^2$. Prove f(n) = O(g(n)) and $g(n) \neq O(f(n))$.

Direction 1: Constant Finding

Proof of $g(n) \neq O(f(n))$

Let us prove this by contradiction. Suppose, on the contrary, that g(n) = O(f(n)). This means the existence of constants c_1, c_2 such that, we have for all $n \ge c_2$

$$n^{2} \leq c_{1} \cdot (10n + 5)$$

$$\Rightarrow \qquad n^{2} \leq c_{1} \cdot 20n$$

$$\Leftrightarrow \qquad n \leq 20c_{1}$$

which cannot always hold for all $n \ge c_2$. This completes the proof.

Exercise 1)

Let f(n) = 10n + 5 and $g(n) = n^2$. Prove f(n) = O(g(n)) and $g(n) \neq O(f(n))$.

Direction 2: Inspecting $\lim_{n\to\infty} \frac{f(n)}{g(n)}$

Proof of f(n) = O(g(n))

$$\lim_{n \to \infty} \frac{10n + 5}{n^2} = \lim_{n \to \infty} \frac{10 + 5/n}{n} = 0.$$

Hence, f(n) = O(g(n)).

Let f(n) = 10n + 5 and $g(n) = n^2$. Prove f(n) = O(g(n)) and $g(n) \neq O(f(n))$.

Direction 2: Inspecting $\lim_{n\to\infty} \frac{f(n)}{g(n)}$

Proof of $g(n) \neq O(f(n))$

$$\lim_{n\to\infty}\frac{n^2}{10n+5}=\infty.$$

Hence, $g(n) \neq O(f(n))$.

Let $f(n) = 5 \log_2 n$ and $g(n) = \sqrt{n}$. Prove f(n) = O(g(n)) and $g(n) \neq O(f(n))$.

Proof of
$$f(n) = O(g(n))$$

Setting $c_1 = 5$, we want:

$$5\log_2 n \le 5 \cdot \sqrt{n}$$

$$\Leftrightarrow \qquad \log_2 n \le \sqrt{n}$$

Hence, it suffices to set $c_2 = 64$.

Proof of $g(n) \neq O(f(n))$

We prove this by contradiction. Suppose that g(n) = O(f(n)). It implies that there exist constants c_1, c_2 such that for all $n \ge c_2$, we have

$$\sqrt{n} \le c_1 \cdot 5 \cdot \log_2 n$$

$$\Leftrightarrow \qquad \frac{\sqrt{n}}{\log_2 n} \le 5c_1$$

which cannot always hold for all $n \ge c_2$. This completes the proof.

Direction 2: Inspecting $\lim_{n\to\infty} \frac{f(n)}{g(n)}$

Proof of f(n) = O(g(n))

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=\lim_{n\to\infty}\frac{5\log_2 n}{\sqrt{n}}=0.$$

Thus, we have f(n) = O(g(n)).

Proof of $g(n) \neq O(f(n))$.

$$\lim_{n\to\infty}\frac{g(n)}{f(n)}=\lim_{n\to\infty}\frac{\sqrt{n}}{5\log_2 n}=\infty.$$

Hence, $g(n) \neq O(f(n))$.

Given that f(n) = O(g(n)), prove $\sqrt{f(n)} = O(\sqrt{g(n)})$.

Since f(n) = O(g(n)) implies the existence of constants c_1 and c_2 such that $f(n) \le c_1 \cdot g(n)$ holds for all $n \ge c_2$.

Thus:

$$\sqrt{f(n)} \le \sqrt{c_1 \cdot g(n)} = \sqrt{c_1} \cdot \sqrt{g(n)}$$

holds for all $n \ge c_2$.

Therefore, by setting $c_1' = \sqrt{c_1}$ and $c_2' = c_2$, we have $\sqrt{f(n)} = O(\sqrt{g(n)})$.

Direction 2: Inspecting $\lim_{n\to\infty} \frac{f(n)}{g(n)}$

Since f(n) = O(g(n)), we have $\lim_{n\to\infty} \frac{f(n)}{g(n)} = c$, where c is some constant.

The above implies that:

$$\lim_{n \to \infty} \frac{\sqrt{f(n)}}{\sqrt{g(n)}} = \lim_{n \to \infty} \sqrt{\frac{f(n)}{g(n)}} = \sqrt{\lim_{n \to \infty} \frac{f(n)}{g(n)}} = \sqrt{c}$$

Therefore, $\sqrt{f(n)} = O(\sqrt{g(n)})$.

Note that in this proof we assume that $\lim_{n\to\infty}\frac{f(n)}{g(n)}$ exists, the same assumption holds in the following exercise.

Consider functions of n: $f_1(n)$, $f_2(n)$, $g_1(n)$ and $g_2(n)$ such that:

$$f_1(n) = O(g_1(n))$$
 and $f_2(n) = O(g_2(n))$

Prove
$$f_1(n) + f_2(n) = O(g_1(n) + g_2(n))$$
.

Since $f_1(n) = O(g_1(n))$, there exist constants c_1 and c_2 such that $f_1(n) \le c_1 \cdot g_1(n)$ holds for all $n \ge c_2$.

Similarly, $f_2(n) = O(g_2(n))$ implies the existence of constants c_1' and c_2' such that $f_2(n) \le c_1' \cdot g_2(n)$ holds for all $n \ge c_2'$.

Thus:

$$f_1(n) + f_2(n) \le c_1 \cdot g_1(n) + c_1' \cdot g_2(n) \le \max\{c_1, c_1'\} \cdot (g_1(n) + g_2(n))$$
 for all $n > \max\{c_2, c_2'\}$.

Therefore, $f_1(n) + f_2(n) = O(g_1(n) + g_2(n))$.

Direction 2: Inspecting $\lim_{n\to\infty} \frac{f(n)}{g(n)}$

Since $f_1(n) = O(g_1(n))$, we have $\lim_{n\to\infty} \frac{f_1(n)}{g_1(n)} = c$ for some constant c.

Similarly, $f_2(n) = O(g_2(n))$ indicates $\lim_{n\to\infty} \frac{f_2(n)}{g_2(n)} = c'$ for some constant c'.

This leads to:

$$\lim_{n \to \infty} \frac{f_1(n) + f_2(n)}{g_1(n) + g_2(n)} = \lim_{n \to \infty} \frac{f_1(n)}{g_1(n) + g_2(n)} + \lim_{n \to \infty} \frac{f_2(n)}{g_1(n) + g_2(n)}$$

$$\leq \lim_{n \to \infty} \frac{f_1(n)}{g_1(n)} + \lim_{n \to \infty} \frac{f_2(n)}{g_2(n)}$$

$$\leq c + c'.$$

Therefore, $f_1(n) + f_2(n) = O(g_1(n) + g_2(n))$.

