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In the class, we have learned that, intuitively, f (n) = O(g(n)) means

“function f (n) grows asymptotically no faster than function g(n)”. In

the next few slides, we will reinforce this understanding from a graphical

point of view.
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Quadratic vs. Linear

f (n) = n2 and g(n) = 100n.
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So we know g(n) = O(f (n)).

Note that we can scale up f (x) a constant times to make the red
line always above the blue line.
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Exponential vs. Quadratic

f (n) = 1.1n and g(n) = n2.
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So we know g(n) = O(f (n)).

Note that we can scale up f (x) a constant times to make the red
line always above the blue line.
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Polynomial vs. Poly-Logarithmic

f (n) = n1.1 and g(n) = (log2 n)9.
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So we know g(n) = O(f (n)).

Note that we can scale up f (x) a constant times to make the red
line always above the blue line.
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An Example of Θ

f (n) = 10n2 and g(n) = n2 −
√
n + (log2 n)3.
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So we know g(n) = Θ(f (n)).

Clearly the blue line is always below the red line. But we can also
scale up g(x) a constant times to make the blue line always above
the red line (figure this out from the left figure of the 2nd row).
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Our final words concern the definition of big-O. Recall that our “official”
definition of f (n) = O(g(n)) is:

There is a constant c1 > 0 such that f (n) ≤ c1 · g(n) holds for all
n at least a constant c2.

In the lecture, we also mentioned that f (n) = O(g(n)) when

limn→∞
f (n)
g(n) is at most some constant c . This provides an alternative

approach to prove the big-O.

However, it must be emphasized that limn→∞
f (n)
g(n) ≤ c is only a sufficient

condition of big-O, but not a necessary condition. Why? Because it is

possible that f (n) = O(g(n)), and yet, limn→∞
f (n)
g(n) does not exist! We

will see an example in the next slide.
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Consider f (n) = 2n. Define g(n) as:

g(n) = 2n if n is even;

g(n) = 2n−1 otherwise.

Since f (n) ≤ 2g(n) holds for all n ≥ 1, it holds that f (n) = O(g(n)).

However, limn→∞
f (n)
g(n) does not exist, because it keeps jumping between

1 and 2 as n increases!
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