Side Talk: More on Big-O

Yufei Tao
Department of Computer Science and Engineering
Chinese University of Hong Kong

In the class, we have learned that, intuitively, $f(n)=O(g(n))$ means "function $f(n)$ grows asymptotically no faster than function $g(n)$ ". In the next few slides, we will reinforce this understanding from a graphical point of view.

Quadratic vs. Linear
$f(n)=n^{2}$ and $g(n)=100 n$.

So we know $g(n)=O(f(n))$.
Note that we can scale up $f(x)$ a constant times to make the red line always above the blue line.

Exponential vs. Quadratic

$f(n)=1.1^{n}$ and $g(n)=n^{2}$.

So we know $g(n)=O(f(n))$.
Note that we can scale up $f(x)$ a constant times to make the red line always above the blue line.

Polynomial vs. Poly-Logarithmic

$f(n)=n^{1.1}$ and $g(n)=\left(\log _{2} n\right)^{9}$.

So we know $g(n)=O(f(n))$.
Note that we can scale up $f(x)$ a constant times to make the red line always above the blue line.

An Example of Θ

$f(n)=10 n^{2}$ and $g(n)=n^{2}-\sqrt{n}+\left(\log _{2} n\right)^{3}$.

So we know $g(n)=\Theta^{x}(f(n))$.
Clearly the blue line is always below the red line. But we can also scale up $g(x)$ a constant times to make the blue line always above the red line (figure this out from the left figure of the 2 nd row).

Our final words concern the definition of big-O. Recall that our "official" definition of $f(n)=O(g(n))$ is:

There is a constant $c_{1}>0$ such that $f(n) \leq c_{1} \cdot g(n)$ holds for all n at least a constant c_{2}.

In the lecture, we also mentioned that $f(n)=O(g(n))$ when $\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}$ is at most some constant c. This provides an alternative approach to prove the big-O.

However, it must be emphasized that $\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)} \leq c$ is only a sufficient condition of big-O, but not a necessary condition. Why? Because it is possible that $f(n)=O(g(n))$, and yet, $\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}$ does not exist! We will see an example in the next slide.

Consider $f(n)=2^{n}$. Define $g(n)$ as:

- $g(n)=2^{n}$ if n is even;
- $g(n)=2^{n-1}$ otherwise.

Since $f(n) \leq 2 g(n)$ holds for all $n \geq 1$, it holds that $f(n)=O(g(n))$.
However, $\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}$ does not exist, because it keeps jumping between 1 and 2 as n increases!

