
More Examples and Applications on AVL Tree

CSCI2100 Tutorial 11

Jianwen Zhao

Department of Computer Science and Engineering
The Chinese University of Hong Kong

Adapted from the slides of the previous offerings of the course

CSCI2100, The Chinese University of Hong Kong More Examples and Applications on AVL Tree



Recall in lectures we studied the AVL tree, which is one type of
self-balancing binary search tree. The aim was to store a set of integers S
supporting the following operations:

A predecessor query: given an integer q, find its predecessor in S ;

Insertion: add a new integer to S ; and

Deletion: remove an integer from S .

We want all of these operations to run in O(log n) (where n is the

number of integers in S) in the worst case. If we were to attempt to

accomplish this using a BST, we must ensure it is balanced after every

operation, and the AVL tree presents one method of doing so.

CSCI2100, The Chinese University of Hong Kong More Examples and Applications on AVL Tree



Rebalancing

We know that a tree is balanced as long as the height of its subtrees
differ by at most 1, and that insertion and deletion can only cause a
2-level imbanace (where the heights differ by 2).

In lectures we explored the Left-Left and Left-Right cases in detail, so
here we will look at Right-Right and Right-Left:

h h+ 2

hh+ 1

h h+ 2

h or h+ 1 h+ 1

CSCI2100, The Chinese University of Hong Kong More Examples and Applications on AVL Tree



Right-Right

Similar to Left-Left, fix by a rotation:

h h+ 2

x h+ 1

a

b

A

B
C

h x

h+ 1

a

b

A B

C

x+ 1

=⇒

Note that x = h or h + 1, and the ordering from left to right of
A, a,B, b,C is preserved after rotation.

CSCI2100, The Chinese University of Hong Kong More Examples and Applications on AVL Tree



Right-Left

Similar to Left-Right, fix by a double rotation:

h h+ 2

hh+ 1

h h+ 2

h

x y

h+ 1 h+ 1

h hx y

a

b

cA

B C

D

A B C D

a

c

b

⇒ ⇒

Note that x and y must be h or h− 1. Futhermore at least one of
them must be h.

CSCI2100, The Chinese University of Hong Kong More Examples and Applications on AVL Tree



Insertion

Let’s see these in action with some concrete examples involving insertion
and deletion. Suppose we start with an empty tree and add 10, 20 and
30. Inserting 30 yields:

0 1
10

20

0 ?

0 ?

30

0 2

0 1⇒ ⇒

30

10

20

10

20

We first traverse from root-to-leaf and add a node with key 30. The

height of the subtrees along this path are now invalidated, so we traverse

back up to the root and recalculate at each node. When we get to node

10, we find that we have an imbalance, in this case of type Right-Right.

CSCI2100, The Chinese University of Hong Kong More Examples and Applications on AVL Tree



Insertion

We fix via a rotation according to the Right-Right case:

0 2

0 1

10

20

30

⇒

1 1
20

10 30

One should check that at the end the tree is balanced, and satisfies
the binary search tree property!

CSCI2100, The Chinese University of Hong Kong More Examples and Applications on AVL Tree



Insertion

Suppose we then add 25, 40 and 50. Upon inserting 50, we will find the
need for another Right-Right rebalancing:

⇒

10

20

30

1 ?

25 40

50

1 ?

?

1 3

1 2

1

2 2

0 11 1

⇒

0

10

20

30

25 40

50

30

20

10 25

40

50

CSCI2100, The Chinese University of Hong Kong More Examples and Applications on AVL Tree



Insertion

To get a Right-Left case, let’s add 35, 33, 37, 60 and 38 (in this exact
order). Upon inserting 38 we will find:

2 ?

? 21 1

30

20

10 25

40

5035

33 37

38

1 ?

?0
60

0 1 ⇒

2 4

3 21 1

30

20

10 25

40

5035

33 37

38

1 2

10
60

0 1 ⇒
1 1

30

20

10 25

40

50

35

33 37

38

10

60

0 1

2 1

3 3

2 2

CSCI2100, The Chinese University of Hong Kong More Examples and Applications on AVL Tree



Deletion

Let’s look at an example of a deletion as well: suppose that some
sequence of operations later we arrive at the following and want to delete
the key 20:

30

20

40

50

35

33 37

45

1

60

1

1 2

3 4

2 3

31 36

47

01 0 2

10

30 40

50

35

33 37

45

1

60

1

2

? 4

2 3

31 36

47

01 0 2

10

0

⇒

31 40

50

35

33 37

45

1

60

1

1

? 4

2 3

36

47

0 2

10

1

30⇒

After identifying and deleting the appropriate node (more on this later),

we again need to traverse back up to the root and rebalance. Here we

run into a Right-Left case.

CSCI2100, The Chinese University of Hong Kong More Examples and Applications on AVL Tree



Deletion

. . . and we are actually still not done because there is another Right-Right
rebalance we need to do:

31 40

50

35

33 37

45

1

60

1

1

2 4

2 3

36

47

0 2

10

1

30 ⇒ 31

40

5035

33

37 45
1

60

1

1

2

36 47

0

2

101

30

2

3 3

Remember that at most one rebalance is needed on insert; but
deletion may require more than one!

CSCI2100, The Chinese University of Hong Kong More Examples and Applications on AVL Tree



Special Exercise 10 Problem 5

Problem

Let S be a dynamic set of integers, and n = |S |. Describe a data
structure to support the following operations on S with the required
performance guarantees:

Insert a new element to S in O(log n) time.

Delete an element from S in O(log n) time.

Report the k smallest elements of S in O(k) time, for any k
satisfying 1 ≤ k ≤ n.

Your data structure must consume O(n) space at all times.

CSCI2100, The Chinese University of Hong Kong More Examples and Applications on AVL Tree



Special Exercise 10 Problem 5

Solution

We maintain a binary search tree T over S , which consumes O(n) space
at all times.

For insertion, insert a new element into T , rebalance T and identify
the smallest element e in T (O(log n) time).

For deletion, remove an element from T , rebalance T and identify
the smallest element e in T (O(log n) time).

For reporting the k smallest elements, start from e and repeat the
following until we find the k elements:

- Starting from current node, find the next node which stores
the successor s of the current node, and report s.

CSCI2100, The Chinese University of Hong Kong More Examples and Applications on AVL Tree



Special Exercise 10 Problem 5

Example

Suppose that k = 5 and after a sequence of insertions and deletions, we
have the following BST:

30

15 40

10 20 7335

3 12 32 36 60

CSCI2100, The Chinese University of Hong Kong More Examples and Applications on AVL Tree



Special Exercise 10 Problem 5

Example

Then we can report the 5 smallest elements as follows:

30

15

32

40

2010 35 73

60363

30

15

32

40

2010 35 73

60363

30

15

32

40

2010 35 73

60363

30

15

32

40

2010 35 73

60363

30

15

32

40

2010 35 73

60363

30

15

32

40

2010 35 73

60363

12 12 12

12 12 12

CSCI2100, The Chinese University of Hong Kong More Examples and Applications on AVL Tree



Cost analysis

Lemma: During the process of traversing the k smallest elements,
any node can be visited at most twice.

Proof: In our algorithm, We traverse the k elements in a bottom-up
manner. Therefore, there are only two cases for visiting a node u:

u

v

Case 1

u

Case 2

Case 1: u has a right child. After visiting u, we have to visit its child
node v , and then go back to visit u again. Hence, u was visited twice.

Case 2: u does not have a right child. After visiting u, we directly go up

to visit next node and never come back to u again. Hence, u is only

visited once.

CSCI2100, The Chinese University of Hong Kong More Examples and Applications on AVL Tree



Cost analysis

Since visiting a node once takes O(1) time, and based on the lemma we
know that a node can be visited at most twice.

Hence, the time for reporting k smallest elements is bounded by

2 · k · O(1) = O(k).

CSCI2100, The Chinese University of Hong Kong More Examples and Applications on AVL Tree



BST with counter – dynamic version

In tutorial 10, we have introduced range count problem and solved it by
augmenting a balanced BST by storing the number of nodes in the
subtree of u in each node u. For example:

29
cnt = 11

40

12 47

153

18

71

41 68 92

cnt = 1 cnt = 1 cnt = 1 cnt = 1

cnt = 1 cnt = 2

cnt = 4

cnt = 2
cnt = 3

cnt = 6

CSCI2100, The Chinese University of Hong Kong More Examples and Applications on AVL Tree



When we perform a insertion or deletion, we need to rebalance the BST
as well as updating the counter values of some nodes.

Suppose that we insert 20 into the following BST:

29
cnt = 11

40

12 47

153

18

71

41 68 92cnt = 1

cnt = 1 cnt = 1 cnt = 1

cnt = 1 cnt = 2

cnt = 4

cnt = 2
cnt = 3

cnt = 6

29
cnt = ?

40

12 47

153

18

71

41 68 92cnt = ?

cnt = 1 cnt = 1 cnt = 1

cnt = 1 cnt = ?

cnt = ?

cnt = 2
cnt = 3

cnt = 6

20cnt = 1

The node with key 15 becomes imbalanced, and the counter values of the

nodes along the path we traversed when inserting 20 are now invalidated.

CSCI2100, The Chinese University of Hong Kong More Examples and Applications on AVL Tree



We first rebalance the BST via a rotation(Right-Right case), and then
recalculate the counter values of the afore mentioned nodes.

29
cnt = ?

40

12 47

153

18

71

41 68 92cnt = ?

cnt = 1 cnt = 1 cnt = 1

cnt = 1 cnt = ?

cnt = ?

cnt = 2
cnt = 3

cnt = 6

20cnt = 1

cnt = ?

29
cnt = ?

40

12 47

183

20

71

41 68 92

cnt = 1 cnt = 1 cnt = 1 cnt = 1

cnt = 1 cnt = ?

cnt = ?

cnt = 2
cnt = 3

cnt = 6

15

cnt = 1

29
cnt = 12

40

12 47

183

20

71

41 68 92

cnt = 1 cnt = 1 cnt = 1 cnt = 1

cnt = 1 cnt = 3

cnt = 5

cnt = 2
cnt = 3

cnt = 6

15

CSCI2100, The Chinese University of Hong Kong More Examples and Applications on AVL Tree



Recall that when performing insertion or deletion, we essentially descend
a root-to-leaf path, only the counter values of the nodes on this path
need to be updated.

Therefore, we can update the counter values of these nodes in the

bottom-up order, which follows the same idea with the updating of the

subtree height values of these nodes.

CSCI2100, The Chinese University of Hong Kong More Examples and Applications on AVL Tree



Count of Smaller Numbers Problem

Problem

Given an array A with n integers. Describe an algorithm to produce a
new array B, such that B[i ] (1 ≤ i ≤ n) is the number of elements in A
that (i) are smaller than A[i ], and (ii) are to the right of A[i ].

Example

A: 29 12 47 40 71 15 3 41 18 11 92 68

To the right of A[8] = 41, there are 2 smaller elements, then B[8] = 2;
To the right of A[5] = 71, there are 6 smaller elements, then B[5] = 6;
· · · · · ·
Hence, the output array B should be:

B: 5 2 6 4 6 2 0 2 1 0 1 0

CSCI2100, The Chinese University of Hong Kong More Examples and Applications on AVL Tree



Solution

Clearly, B[n] = 0. We maintain a balanced BST T with counters. At the
beginning, T contains only A[n].

Then, for i = n − 1 downto 1, do the following:

Perform a range count, i.e., find the number of integers in T which
are in the range of (−∞,A[i ]]. Denote the result by c .

Set B[i ] = c .

Insert A[i ] to T .

CSCI2100, The Chinese University of Hong Kong More Examples and Applications on AVL Tree



Example

A: 29 12 47 40 71

i

15 3 41 18 11 92 68 n = 12

Suppose that after a sequence of operations, i = 5, then our BST T
constructed on the elements from A[6] to A[12] should be:

cnt = 7

cnt = 3 cnt = 3

cnt = 1 cnt = 1 cnt = 1cnt = 1

18

11 68

3 15 9241

CSCI2100, The Chinese University of Hong Kong More Examples and Applications on AVL Tree



Example

cnt = 7

cnt = 3 cnt = 3

cnt = 1 cnt = 1 cnt = 1cnt = 1

18

11 68

3 15 9241

Since A[5] = 71, perform a range count to find the number of integers in
the above BST which are in the range of (3, 71]. This gives c = 6.
Hence, B[5] = 6.

CSCI2100, The Chinese University of Hong Kong More Examples and Applications on AVL Tree



Cost Analysis

For each element in A[i ], we perform an insertion and a range
count, which takes at most O(log n) time.

We have n elements in total.

Hence, the whole algorithm terminates in O(n log n) time.

CSCI2100, The Chinese University of Hong Kong More Examples and Applications on AVL Tree


