
Applications of the Binary Search Tree

Shangqi Lu

Department of Computer Science and Engineering
The Chinese University of Hong Kong

Adapted from the slides of the previous offerings of the course

CSCI2100, CUHK Applications of the Binary Search Tree



Recall

A binary search tree (BST) on a set S of n integers is a binary tree T
satisfying all the following requirements:

T has n nodes.

Each node u in T stores a distinct integer in S , which is called the
key of u.

For every internal u, it holds that:

The key of u is larger than all the keys in the left subtree of u.
The key of u is smaller than all the keys in the right subtree of
u.

CSCI2100, CUHK Applications of the Binary Search Tree



Example

Two possible BSTs on S = {3, 11, 12, 15, 18, 29, 40, 41, 47, 68, 71, 92}:

18 47 713 12

11 29 41 92

15 68

40
92

71

68

15

18

47

3

11

12

41

40

29

CSCI2100, CUHK Applications of the Binary Search Tree



Recall

A binary tree T is balanced if the following holds on every internal node
u of T :

The height of the left subtree of u differs from that of the right
subtree of u by at most 1.

CSCI2100, CUHK Applications of the Binary Search Tree



Example

18 47 713 12

11 29 41 92

15 68

40
92

71

68

15

18

47

3

11

12

41

40

29

The BST on the left is balanced, while the one on the right is not.

CSCI2100, CUHK Applications of the Binary Search Tree



Predecessor Query

Let S be a set of integers. A predecessor query for a given integer q is to

find its predecessor in S , which is the largest integer in S that does not

exceed q.

CSCI2100, CUHK Applications of the Binary Search Tree



Example

Suppose that S = {3, 11, 12, 15, 18, 29, 40, 41, 47, 68, 71, 92} and we have
a balanced BST T on S :

18 47 713 12

11 29 41 92

15 68

40

We want to find the predecessor of q = 42 in S .

CSCI2100, CUHK Applications of the Binary Search Tree



Example

Predecessor query for q = 42:

18 47 713 12

11 29 41 92

15 68

40
u.key = 40
p = −∞

Initialize p = −∞.

Initialize u ← the root of T .

Now u.key = 40 and p = −∞.

Since u.key < q, the
predecessor of q must be either
u or some node in the right
subtree of u.

Set p = 40 and u ← the right
child of u.

CSCI2100, CUHK Applications of the Binary Search Tree



Example

Predecessor query for q = 42:

18 47 713 12

11 29 41 92

15 68

40

u.key = 68
p = 40

Since u.key > q, the
predecessor of q must be either
p or some node in the left
subtree of u.

Set u ← the left child of u.

CSCI2100, CUHK Applications of the Binary Search Tree



Example

Predecessor query for q = 42:

18 47 713 12

11 29 41 92

15 68

40

u.key = 41
p = 40

Since u.key < q, the
predecessor of q must be either
u or some node in the right
subtree of u.

Set p = 41 and u ← the right
child of u.

CSCI2100, CUHK Applications of the Binary Search Tree



Example

Predecessor query for q = 42:

18 47 713 12

11 29 41 92

15 68

40

u.key = 47
p = 41

Since u.key > q, the
predecessor of q must be either
p or some node in the left
subtree of u.

Set u ← the left child of u.

Since u is nil now, return
p = 41 as the predecessor of q
in S .

CSCI2100, CUHK Applications of the Binary Search Tree



Successor Query

Let S be a set of integers. A successor query for a given integer q is to

find its successor in S , which is the smallest integer in S that is no

smaller than q.

CSCI2100, CUHK Applications of the Binary Search Tree



Example

Successor query for q = 17 on S :

18 47 713 12

11 29 41 92

15 68

40
u.key = 40
p = ∞

Initialize p =∞.

Initialize u ← the root of T .

Now u.key = 40 and p =∞.

Since u.key > q, the successor
of q must be either u or some
node in the left subtree of u.

Set p = 40 and u ← the left
child of u.

CSCI2100, CUHK Applications of the Binary Search Tree



Example

Successor query for q = 17 on S :

18 47 713 12

11 29 41 92

15 68

40

u.key = 15
p = 40 Since u.key < q, the successor

of q must be either p or some
node in the right subtree of u.

Set u ← the right child of u.

CSCI2100, CUHK Applications of the Binary Search Tree



Example

Successor query for q = 17 on S :

18 47 713 12

11 29 41 92

15 68

40

u.key = 29
p = 40

Since u.key > q, the successor
of q must be either u or some
node in the left subtree of u.

Set p = 29 and u ← the left
child of u.

CSCI2100, CUHK Applications of the Binary Search Tree



Example

Successor query for q = 17 on S :

18 47 713 12

11 29 41 92

15 68

40

u.key = 18
p = 29

Since u.key > q, the successor
of q must be either u or some
node in the left subtree of u.

Set p = 18 and u ← the left
child of u.

Since u is nil now, return
p = 18 as the successor of q in
S .

CSCI2100, CUHK Applications of the Binary Search Tree



Construction of a Balanced BST

In the following, we will discuss how to construct a balanced BST T on a

given sorted set S of n integers in O(n) time.

CSCI2100, CUHK Applications of the Binary Search Tree



Construction of a Balanced BST

Observation 1: The subtree of any node in a balanced BST is also
a balanced BST.

Observation 2: A BST of n nodes constructed by the following
form:

balanced BST of bn−1
2
c nodes balanced BST of dn−1

2
e nodes

is a balanced BST(think: why?).

CSCI2100, CUHK Applications of the Binary Search Tree



Construction of a Balanced BST

Assume that the S of n integers is stored in an array A, the array is
sorted.
A balanced BST on S can be constructed as follows:

Base Case:

If n = 0, return nil.
If n = 1, create a node u with key A[1] and return the pointer
of u as the root of a balanced BST on A.

CSCI2100, CUHK Applications of the Binary Search Tree



Construction of a Balanced BST

Inductive Case:

Pick the median of A (i.e., A[b n+1
2 c]) and create a node u for

it.
Recursively construct a balanced BST on the portion of A
positioned before the median, and set its root as the left child
of u.
Recursively construct a balanced BST on the portion of A
positioned after the median, and set its root as the right child
of u.
Return the pointer of u.

balanced BST of bn−1
2
c nodes balanced BST of dn−1

2
e nodes

CSCI2100, CUHK Applications of the Binary Search Tree



Construction of a Balanced BST

Let f (n) be the maximum running time for constructing a balanced BST
from an array of length n. Without loss of generality, suppose that n is a
power of 2. We have:

f (1) = O(1)

f (n) = O(1) + 2 · f (n/2)

Solving the recurrence gives f (n) = O(n).

CSCI2100, CUHK Applications of the Binary Search Tree



Example

Let us construct a balanced BST T on a sorted set
S = {3, 11, 12, 15, 18, 29, 40, 41, 47, 68, 71, 92} by the above algorithm.
Suppose that S is stored in an array A of length 12.

3 11 12 15 18 40 41 47 68 71 9229

29

12

3

11

15

18

47

40

41

71

68 92

CSCI2100, CUHK Applications of the Binary Search Tree



Range Count Problem

Let S be a set of n integers. Given two integers a and b such that a ≤ b.
Find the number of integers in S which are in the range of [a, b].

In the following, we will discuss how to augment a balanced BST on S to
achieve:

O(n) space consumption,

O(log n) time for each query.

CSCI2100, CUHK Applications of the Binary Search Tree



Range Count Problem

Augment a balanced BST T on S by storing one additional information
in each node u that is:

the number of nodes in the subtree of u.

For example,

29

12

3

11

15

18

47

40

41

71

68 92

cnt = 12

cnt = 5

cnt = 2 cnt = 2 cnt = 2 cnt = 3

cnt = 6

cnt = 1 cnt = 1cnt = 1cnt = 1cnt = 1

CSCI2100, CUHK Applications of the Binary Search Tree



Range Count Problem

Define a concept first.

Lowest Common Ancestor: Let t be the root. The lowest common
ancestor of nodes v1 and v2 is the lowest node that is on both of
the paths P(t, v1) and P(t, v2).

For example, the lowest common ancestor of node with key 3 and node
with key 15 is the node with key 12.

29

12

3

11

15

18

47

40

41

71

68 92

cnt = 12

cnt = 5

cnt = 2 cnt = 2 cnt = 2 cnt = 3

cnt = 6

cnt = 1 cnt = 1cnt = 1cnt = 1cnt = 1

CSCI2100, CUHK Applications of the Binary Search Tree



Range Count Problem

For a range [2, 48], let s be the successor of 2, p the predecessor of 48
and u the lowest common ancestor of s and p.
Initialize a count c = 1 (since u is within the range)

29

12

3

11

15

18

47

40

41

71

68 92

cnt = 12

cnt = 5

cnt = 2 cnt = 2 cnt = 2 cnt = 3

cnt = 6

cnt = 1 cnt = 1cnt = 1cnt = 1cnt = 1

𝑠

𝑝

𝑢

CSCI2100, CUHK Applications of the Binary Search Tree



Range Count Problem

Traverse the path from u’s left child to s.
For every node v being visited, if v.key ≥ 2:

c += 1

c += the counter of v ’s right child

29

12

3

11

15

18

47

40

41

71

68 92

cnt = 12

cnt = 5

cnt = 2 cnt = 2 cnt = 2 cnt = 3

cnt = 6

cnt = 1 cnt = 1cnt = 1cnt = 1cnt = 1

𝑠

𝑝

𝑢

C is incremented by 1 + 2.

CSCI2100, CUHK Applications of the Binary Search Tree



Range Count Problem

Traverse the path from u’s left child to s.
For every node v being visited, if v.key ≥ 2:

c += 1

c += the counter of v ’s right child

29

12

3

11

15

18

47

40

41

71

68 92

cnt = 12

cnt = 5

cnt = 2 cnt = 2 cnt = 2 cnt = 3

cnt = 6

cnt = 1 cnt = 1cnt = 1cnt = 1cnt = 1

𝑠

𝑝

𝑢

C is incremented by 1 + 1.

CSCI2100, CUHK Applications of the Binary Search Tree



Range Count Problem

Traverse the path from u’s right child to p.
For every node v being visited, if v.key ≤ 48:

c += 1

c += the counter of v ’s left child

29

12

3

11

15

18

47

40

41

71

68 92

cnt = 12

cnt = 5

cnt = 2 cnt = 2 cnt = 2 cnt = 3

cnt = 6

cnt = 1 cnt = 1cnt = 1cnt = 1cnt = 1

𝑠

𝑝

𝑢

C is incremented by 1 + 2. Finally, c becomes 9.

CSCI2100, CUHK Applications of the Binary Search Tree



Range Count Problem

We walked through two paths, at most log2 n nodes in each path.
For each node visited, we perform constant-time operations, which takes
O(1).
Time complexity: O(log n)

29

12

3

11

15

18

47

40

41

71

68 92

cnt = 12

cnt = 5

cnt = 2 cnt = 2 cnt = 2 cnt = 3

cnt = 6

cnt = 1 cnt = 1cnt = 1cnt = 1cnt = 1

𝑠

𝑝

𝑢

CSCI2100, CUHK Applications of the Binary Search Tree



Range Count Problem

A simpler solution without using a binary search tree

Use binary search algorithm to find the successor s of a

Use binary search algorithm to find the predecessor p of b

Let l be the index of s, then let u be the index p

Return u − l + 1

The above algorithm uses two binary search, the time complexity is

O(log n).

CSCI2100, CUHK Applications of the Binary Search Tree



Range Count Problem

Why don’t we just use the simpler solution?
In practice, we may need to update (insert or delete) the elements in S .
Simpler Solution:

Need to sort S after each update.

Cost for each update: O(n log n)

Solution with BST:

Need to insert or delete a node in the BST.

Cost for each update: O(log n)

That’s why we prefer the BST solution in practice.

CSCI2100, CUHK Applications of the Binary Search Tree


