CSCI2100: Special Exercise Set 9

Prepared by Yufei Tao

Problem 1. Consider the binary search tree (BST) below:

Show the sequence of nodes visited to find the predecessor of 33 .
Problem 2. Consider the binary search tree (BST) below:

Show the sequence of nodes visited to find the successor of 33 .
Problem 3 (Textbook Exercise 12.2-1). Which of the following sequences could not be the sequence of nodes visited in a predecessor query?
A. $2,252,401,398,330,344,397,363$.
B. $924,220,911,244,898,258,362,363$.
C. $925,202,911,240,912,245,363$.
D. 2, 399, 387, 219, 266, 382, 381, 278, 363.

Problem 4. Let T be a balanced BST storing a set of n integers. Give an algorithm to find the smallest integer in $O(\log n)$ time.
Problem 5. Let T be a balanced BST storing a set of n integers. Give an algorithm to report all these integers in ascending order in $O(n)$ time.

Problem 6. Let T be a BST storing a set S of integers. Let u be a node in T with key k. Suppose that u is an internal node with a right child. Prove that the node whose key succeeds k in S must either be a leaf, or have no left child.

