CSCI2100: Special Exercise Set 8

Prepared by Yufei Tao

Problem 1. Show the priority queue after inserting the number 3 into the binary heap below:

Problem 2. Show the priority queue after performing a delete-min on the binary heap shown in the above figure.

Problem 3. Show the binary heap after inserting the following integers (in this order): 10, 9,8 , $7,6,5,4,3,2$, and 1 (you should use the regular insertion algorithm).

Problem 4. Let S be a dynamic set of integers. At the beginning, S is empty. Then, new integers are added to it one by one, but never deleted. Let k be a fixed integer. Describe an algorithm to maintain the k largest integers in S. Your algorithm must use $O(k)$ space at all times, no matter how large $|S|$ is (note that $|S|$ increases continuously, but your space cannot). Furthermore, it must process every integer insertion in $O(\log k)$ time.

For example, suppose that $k=3$, and that the sequence of integers inserted is $83,21,66,5,24$, $76,92,32,43 \ldots$ Your algorithm must be keeping $\{83,66,24\}$ after the insertion of $24,\{83,66,76\}$ after the insertion of 76 , and $\{83,76,92\}$ after the insertion of 43 .

