CSCI2100: Special Exercise Set 4

Prepared by Yufei Tao

Problem 1. Recall that, in merge sort, the merging step combines two sorted lists A_{1}, A_{2} into one sorted list A. Suppose that A_{1} and A_{2} are $(1,8,17,23,35,83)$ and $(3,5,15,28,56)$, respectively. Describe the content of A right before the moment when 23 enters A.

Problem 2. For the k-selection problem, suppose that the input is an array of 12 elements: (58, $23,98,83,32,24,18,45,85,91,2,34)$. Recall that our randomized algorithm first selects a number v, and then recursively solves the problem on a smaller array. Suppose that $v=34$ and $k=10$. What is the smaller array that we will recurse into?

Problem 3 (Textbook Exercise 9.3-5). The median of a set S of n elements is the $\lfloor n / 2\rfloor$ smallest element in S. Suppose that you are given a deterministic algorithm for finding the median of S (stored in an array) in $O(n)$ worst-case time. Using this algorithm as a black box, design another deterministic algorithm for solving the k-selection problem (for any $k \in[1, n]$) in $O(n)$ worst-case time.

Problem 4. Let S be a set of n integers, and k_{1}, k_{2} arbitrary integers satisfying $1 \leq k_{1} \leq k_{2} \leq n$. Suppose that S is given in an array. Give an $O(n)$ expected time algorithm to report all the integers whose ranks in S are in the range $\left[k_{1}, k_{2}\right]$. Recall that the rank of an integer v in S equals the number of integers in S that are at most v.

Problem 5. Let S be a set of n integers given in an array. Describe a deterministic algorithm to find the 100 largest integers in S in $O(n)$ worst-case time.

