CSCI2100: Special Exercise Set 1

Prepared by Yufei Tao

Problem 1. You are given a positive integer n (that is stored in a register of the CPU). Design an algorithm to determine whether n is an even number. Your algorithm should have a cost no more than 10 .

Problem 2. You are given two positive integers n and m (stored in two registers of the CPU). Design an algorithm to calculate $n \bmod m$. Your algorithm should have a cost no more than 10 .

Note: $n \bmod m$ is the "remainder" of n divided by m. For example, $10 \bmod 2=0$ and 13 $\bmod 3=1$.

Problem 3. You are given a positive integer n (that is stored in a register of the CPU). Design an algorithm to determine whether n is a prime number. Your algorithm should have a cost no more than $100 \sqrt{n}$. Note that calculating \sqrt{n} is not an atomic operation.
Problem 4. You are given two positive integers n and m (stored in two registers of the CPU), where n is a power of 2 . Design an algorithm to calculate m^{n}. Your algorithm should have a cost no more than $100 \log _{2} n$.

Problem 5. You are given two sets S_{1} and S_{2} of integers. Specifically, $\left|S_{1}\right|=n$ (that is, the number of integers in S_{1}-the size of S_{1}-is n) while $\left|S_{2}\right|=m$. The integers in S_{1} and S_{2} have been stored in memory as shown in the figure below. In particular, the integers in S_{1} have been sorted in ascending order, while those in S_{2} have not. The starting address x of S_{1} and the starting address y of S_{2} have been stored in the CPU. So are the values of n and m.

Design an algorithm to determine whether $S_{1} \cap S_{2}$ is empty-in other words, whether the two sets have a common integer. Your algorithm should have a cost no more than $100 \mathrm{~m} \log _{2} n$.

