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We already know that the sorting problem on n elements can be settled
in O(n log n) time. In this lecture, we will prove that this is the best time
complexity possible in an important class of algorithms known as the
comparison-based algorithms. Specifically, we will prove that all such
algorithms must incur Ω(n log n) time.

As the second step, we will partially circumvent this obstacle by

presenting an algorithm that beats the Ω(n log n) bound when the data

domain has a small size.
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Given an array A with length n, there are n! different permutations of the
elements therein.

Example

If n = 3, then there are 6 permutations:

A[1],A[2],A[3]

A[1],A[3],A[2]

A[2],A[1],A[3]

A[2],A[3],A[1]

A[3],A[1],A[2]

A[3],A[2],A[1]
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The goal of the sorting problem is essentially to decide which of
the n! permutations corresponds to the final sorted order.
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Comparison-Based Algorithm

Intuitively, this is an algorithm that uses only comparisons to infer the
ordering of the elements in A.

Formally, such an algorithm works by continuously shrinking a pool P of
possible permutations.

At the beginning, P contains all the n! permutations.

Every comparison allows the algorithm to discard all those
permutations in P that are inconsistent with the comparison’s result.

Eventually, P has only 1 permutation left, which is thus the final
sorted order.

In other words, at any moment, all the permutations that remain in P are

possible results. The algorithm cannot terminate as long as |P| ≥ 2.
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Shrinking the Pool: An Example

{A[1], A[2], A[3]}, {A[1], A[3], A[2]}
{A[2], A[1], A[3]}, {A[2], A[3], A[1]}
{A[3], A[1], A[2]}, {A[3], A[2], A[1]}

P

A[1] < A[2] A[1] > A[2]

{A[1], A[2], A[3]}
{A[3], A[1], A[2]}
{A[1], A[3], A[2]}

{A[2], A[1], A[3]}
{A[2], A[3], A[1]}
{A[3], A[2], A[1]}

P1 P2

In general, each comparison allows us to shrink P to either P1 or P2.
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Comparison-Based Algorithm: The Framework

Framework
1. P = all the n! permutations of A
2. while |P| > 1
3. make a comparison between elements e1 and e2
4. if e1 < e2 then
5. P = P1, where P1 is the set of permutations in P

consistent with e1 < e2
6. else
7. P = P2, where P2 is the set of permutations in P

consistent with e1 > e2
8. return the permutation in P

Various algorithms differ in how they implement Step 3.
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A Worst-Case Lower Bound

Note that one of P1 and P2 contains at least half of the
permutations in P (i.e., either |P1| ≥ |P|/2 or |P2| ≥ |P|/2).

The worst case happens when P always shrinks to the larger set
between P1 and P2.

In this case, the size of P shrinks by at most half after each
comparison.

Hence, the number of comparisons required before |P| decreases to
1 is log2(n!).

The next slide shows log2(n!) = Ω(n log n).
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A Worst-Case Lower Bound

log2(n!) =
n∑

i=1

log2 i

≥
n∑

i=n/2

log2 i

≥ (n/2) log2(n/2)

= Ω(n log n).

We now conclude that any comparison-based algorithm must incur

Ω(n log n) time sorting n elements in the worst case.
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It is important to keep in mind that the above lower bound argu-
ment breaks apart as soon as we move away from the comparison-
based class. Indeed, currently, the world’s fastest deterministic
algorithm for sorting n integers guarantees O(n log log n) time (but
in a variant of the RAM model that is slightly more powerful than
the one we have been using). While that algorithm is too ad-
vanced for this course, next we will gain some idea about what a
non-comparison-based algorithm can be, and how it can do better
than Ω(n log n).
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Let us slightly re-define the sorting problem.

The Sorting Problem (in A Small Domain)

Problem Input:

A set S of n integers is given in an array of length n. Every integer is in
the range of [1,U], where the integer U is inside the CPU.

The fact that S is a set (i.e., all the integers therein are distinct)
implies that U ≥ n.

Goal:

Design an algorithm to store S in an array where the elements have been

arranged in ascending order.
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Counting Sort

Step 1: Let A be the array storing S . Create an array B of length U.
Initialize B by setting all its cells to 0.

Step 2: Carry out the following for every i ∈ [1, n]:

Set x to the value of A[i ].

Set B[x ] = 1.

Step 3: Now we will generate the sorted order in A with one more scan
of B:

Clear all the elements in A.

Carry out the following for every x ∈ [1,U]:

If B[x ] = 0, do nothing; otherwise, append integer x to A.
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Example

At the beginning

4 11213 128

Initialize array B

4 11213 128 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

BA

Setting n cells of B to 1

4 11213 128 0 1 0 1 0 0 0 1 0 0 1 1 1 0 0 0

BA

Final sorted list

4 112 13128 0 1 0 1 0 0 0 1 0 0 1 1 1 0 0 0

BA
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Analysis of Counting Sort

Steps 1 and 3 take O(U) time, while Step 2 O(n) time.

Therefore, the overall running time of counting sort is O(n + U) = O(U).

For small U = O(n) (e.g., 1000n), the counting sort runs in O(n) time.
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Observe how counting sort gets around being “comparison-based”—in
fact, it does not compare any pair of elements! Instead, it figures out the
element ordering using ideas drastically different from doing comparisons:
that is, by way of array B.

It is important to remember that counting sort does not improve merge

sort! In fact, its time complexity O(n + U) is incomparable to the time

complexity O(n log n) of merge sort. For example, when U = O(n),

counting sort is faster, but when U = Ω(n2), merge sort is faster.
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