
Recursion: The Beginning

Yufei Tao

Department of Computer Science and Engineering
Chinese University of Hong Kong

Yufei Tao Recursion: The Beginning



This lecture will introduce a useful technique called recursion. If used
judiciously, this technique often leads to elegant algorithms that are easy
to understand and analyze.

To make our point, we will first “re-discover” the binary search algorithm

by way of recursion. Then, we will use the technique to obtain an

algorithm for solving another problem called sorting. This will pave the

way for more advanced applications of recursion in later lectures.

Yufei Tao Recursion: The Beginning



Array

An array of length n is a sequence of n elements such that

they are stored consecutively in memory (i.e., the first
element is immediately followed by the second, and then by
the third, and so on);

every element occupies the same number of memory cells.

...

5 9 12 17 26 28 35 38 41 47 52 68 69 72 83 88

array of length 16

array of length 12

Yufei Tao Recursion: The Beginning



With the concept of array, we now redefine the dictionary search problem:

The Dictionary Search Problem (Redefined)

Problem Input:

A set S of n integers has been arranged in ascending order in an array of
length n. You are given the value of n and another integer v inside the
CPU.

Goal:

Design an algorithm to determine whether v exists in S .

Yufei Tao Recursion: The Beginning



Recursion in General

The idea of recursion can be summarized as:

1 [Reduce]
Show that if we can solve the same problem but with a size smaller
than n, then we can solve the original problem (of size n).

2 [Base]
When the problem size has become sufficiently small, solve it
trivially.

Yufei Tao Recursion: The Beginning



Binary Search (Re-discovered)

Reduce (Problem Size n > 1)

1. Compare v to the middle element e of the array. If v = e, return
“yes” and done.

2. Otherwise:

2.1 If v < e, solve the problem in the part of the array before e;
2.2 If v > e, solve the problem in the part of the array after e.

Yufei Tao Recursion: The Beginning



Binary Search (Re-discovered)

Base Case (n = 0 or 1)

Trivial:

If n = 0, then simply return “no”.

If n = 1, compare v to the (only) element in the array in O(1) time
(i.e., constant time without caring about what the constant is).

Our algorithm description is now complete!

Yufei Tao Recursion: The Beginning



Analysis of Binary Search

Next we will see how recursion allows us to analyze the running time in a
neat way.

Define f (n) to be the worst-case running time of binary search. From the
base case, we know:

f (1) = O(1)

From the inductive case, we know:

f (n) ≤ O(1) + f (n/2)

where the O(1) term is the cost of Step 1 (of Slide 6), and the f (n/2)

term is the cost of Step 2.1 or 2.2, noticing that each of the two steps

runs binary search on a problem of size at most n/2.

Yufei Tao Recursion: The Beginning



Analysis of Binary Search

So it remains to solve the recurrence (c1, c2 are constants whose values
we do not care):

f (1) = c1

f (n) ≤ c2 + f (n/2)

An easy way of doing so is the expansion method, which simply expands
f (n) all the way down:

f (n) ≤ c2 + f (n/2)

≤ c2 + c2 + f (n/22)

≤ c2 + c2 + c2 + f (n/23)

≤ c2 + ... + c2︸ ︷︷ ︸
log2 n of them

+f (1)

= c2 · log2 n + c1 = O(log n).

Yufei Tao Recursion: The Beginning



Analysis of Binary Search

Technically speaking, our previous analysis holds only when n is a power
of 2 (otherwise, some n/2i along the way is a non-integer, making
f (n/2i ) undefined).

We can account for this easily using a rounding approach. Suppose that
n is not a power of 2. Let n′ be the least power of 2 that is larger than n.
It thus holds that n′ < 2n (otherwise, n′ is not the least).

We then have:

f (n) ≤ f (n′)

≤ c2 · log2 n
′ + c1 (proved earlier)

< c2 · log2(2n) + c1

= c2(1 + log2 n) + c1

= c2 log2 n + c1 + c2 = O(log n).

Yufei Tao Recursion: The Beginning



Next, we switch our attention to the sorting problem, which is a
classical problem in computer science, and is worth several lectures’
discussion.

Yufei Tao Recursion: The Beginning



The Sorting Problem

Problem Input:

A set S of n integers is given in an array of length n. The value of n is
inside the CPU (i.e., in a register).

Goal:

Design an algorithm to store S in an array where the elements have been

arranged in ascending order.

Yufei Tao Recursion: The Beginning



Example

Input:

...

5 91217 2628 3538 41 47 52686972 8388

16

Output:

...

5 9 12 17 26 28 35 38 41 47 52 68 69 72 83 88

16

Yufei Tao Recursion: The Beginning



We will use recursion to design our first sorting algorithm, called
selection sort.

Yufei Tao Recursion: The Beginning



Selection Sort

Reduce(Problem Size n > 1)

1. Scan all the elements in the array to identify the largest one emax .

2. Swap the positions of emax and the last (i.e., n-th) element of the
array (after which emax is at the end of the array).

3. Sort the first n − 1 elements.

Yufei Tao Recursion: The Beginning



Selection Sort

Base (n = 1)

Trivial. Nothing to sort. Return directly.

Yufei Tao Recursion: The Beginning



Example

Input:

...

5 91217 2628 3538 41 47 52686972 8388

16

After the induction step at n = 16:

...

59 1217 2628 3538 41 47 52686972 83 88

16

sort these 15 elements recursively

Yufei Tao Recursion: The Beginning



Analysis of Selection Sort

Let f (n) be the worst-case running time of selection sort when the
problem size is n. From the base case, we know:

f (n) = O(1)

From the inductive case, we have:

f (n) ≤ O(n) + f (n − 1)

where the O(n) term captures the cost of Steps 1 and 2, and f (n − 1) is
the cost of Step 3.

Yufei Tao Recursion: The Beginning



Analysis of Selection Sort

So it remains to solve the recurrence (c1, c2 are constants whose values
we do not care):

f (1) = c1

f (n) ≤ c2n + f (n − 1)

Using the expansion method, we get:

f (n) ≤ c2n + f (n − 1)

≤ c2n + c2(n − 1) + f (n − 2)

≤ c2n + c2(n − 1) + c2(n − 2) + f (n − 3)

≤ c2n + c2(n − 1) + ... + c2 · 2 + f (1)

≤ c2n(n + 1)/2 + c1

= O(n2).

We now conclude that the selection sort algorithm solves the sorting

problem in O(n2) worst-case time.

Yufei Tao Recursion: The Beginning


