
RAM with Randomization

Yufei Tao

Department of Computer Science and Engineering
Chinese University of Hong Kong

Yufei Tao RAM with Randomization



So far all our algorithms are deterministic, namely, they do not involve
any randomization. This lecture will introduce you to randomized
algorithms. Such algorithms play an important role in computer
science—they are often simpler, and sometimes can be provably faster as
well.

Our current RAM model, however, is not powerful enough for studying

randomized algorithms—it does not have any random mechanism yet!

We will fix it formally by incorporating one more atomic operation.

Accordingly, we will also need extend the notions of “algorithm” and

“cost of an algorithm”.

Yufei Tao RAM with Randomization



RAM with Randomization

Recall that the core of the RAM model is a set of atomic operations. We
now formally extend this set with one more atomic operation:

RANDOM(x , y): Given integers x and y (satisfying x ≤ y), this
operation returns an integer chosen uniformly at random in [x , y ].

Any of x , x + 1, x + 2, ... y has the same probability of being
returned.

Yufei Tao RAM with Randomization



Deterministic Algorithms vs. Random Algorithms

An algorithm is deterministic if it never invokes the atomic oper-
ation RANDOM. Otherwise, the algorithm is randomized.

Recall that the cost of an algorithm is the length of the algorithm’s
execution (recall that an execution is a sequence of atomic operations).

On the same input, the cost of a deterministic algorithm is a fixed
integer—it remains the same every time you execute the algorithm.

The cost of a randomized algorithm, however, is a random variable. Even
on the same input, the cost may change each time the algorithm is
executed.

Yufei Tao RAM with Randomization



Example

1. do
2. r = RANDOM(0, 1)
3. until r = 1

How many times would Line 2 be executed? The answer is—“we don’t
know” (in fact, the line may be executed an infinite number of times)!
Every time the above “algorithm” is executed, it may produce a new
sequence of atomic operations.

Yufei Tao RAM with Randomization



Expected Cost of a Randomized Algorithm

Let X be a random variable that equals the cost of an algorithm
on an input. The expected cost of the algorithm on the input is
the expectation of X .

Yufei Tao RAM with Randomization



Example 1

1. do
2. r = RANDOM(0, 1)
3. until r = 1

Let X be the cost of the above (randomized) algorithm. X equals 2 with
probability 1/2, 4 with probability 1/4, 6 with probability 1/8, ... In
general, for i ≥ 1:

Pr[X = 2i ] = 1/2i .

Hence:

E[X ] =
∞∑
i=1

2i

2i
= 4 = O(1)

where we used the fact that
∑∞

i=1(i/2i ) = 2.

Yufei Tao RAM with Randomization



Example 2

Now let us see another example where the input size is a general integer
n.

Problem “Find-a-Zero”: Let A be an array of n integers, among
which there is at least one 0. Design an algorithm to report an
arbitrary position of A that contains a 0.

For example, suppose A = (9, 18, 0, 0, 15, 0, 33, 17). An algorithm can

report 3 (because A[3] = 0), 4, or 6.

Yufei Tao RAM with Randomization



Example 2

Consider the following randomized algorithm:

1. do
2. r = RANDOM(1, n)
3. until A[r ] = 0
4. return r

What is the expected cost of the algorithm? The answer is “it depends”:

If all numbers in A are 0, the algorithm finishes in O(1) time.

If A has only one 0, the algorithm finishes in O(n) expected time
because

A[r ] has 1/n probability of being 0.
In expectation, we need to repeat n times to find the 0.

Yufei Tao RAM with Randomization



Worst Cost and Worst Expected Cost of a Randomized Algorithm

Under a problem size n, the worst-case expected cost (or just
expected cost in short) of a randomized algorithm is the maximum
expected cost of the algorithm on every possible input of size n.

Under a problem size n, the worst-case cost of a randomized
algorithm is the maximum cost of the algorithm on every possible
input of size n.

Yufei Tao RAM with Randomization



Example 2 (cont.)

Remember array A has at least one 0.

1. do
2. r = RANDOM(1, n)
3. until A[r ] = 0
4. return r

Worst-case cost of the algorithm = ∞
Worst-case expected cost of the algorithm = O(n)

Yufei Tao RAM with Randomization



We now have a new RAM model. This is the computation model
we will stick to in the rest of the course.

Before finishing the lecture, we will tap into the power of random-
ization by witnessing a problem where randomized algorithms are
provably faster than deterministic ones.

Yufei Tao RAM with Randomization



Power of Randomization

Problem “Find-a-Zero”: Let A be an array of n integers, among
which half of them are 0. Design an algorithm to report an arbitrary
position of A that contains a 0.

For example, suppose A = (9, 18, 0, 0, 15, 0, 33, 0). An algorithm can

report 3, 4, 6, or 8.

Yufei Tao RAM with Randomization



Power of Randomization

1. do
2. r = RANDOM(1, n)
3. until A[r ] = 0
4. return r

The algorithm finishes in O(1) expected time on every input A!

In contrast, any deterministic algorithm must probe at least n/2 integers

of A in the worst case! In other words, any deterministic algorithm must

have a worst case time of Θ(n)—provably slower than the above

randomized algorithm (in expectation).

Yufei Tao RAM with Randomization


