
Quick Sort

Yufei Tao

Department of Computer Science and Engineering
Chinese University of Hong Kong

Yufei Tao Quick Sort



Today we will discuss another sorting algorithm named quick sort. It is

indeed quick in practice, but what is more interesting about the way it is

designed and analyzed. As we will see, this is a randomized algorithm

that runs in O(n2) time in the worst case (to sort n numbers), but

O(n log n) time in expectation.

Yufei Tao Quick Sort



Recall:

The Sorting Problem

Problem Input:

A set S of n integers is given in an array of length n.

Goal:

Design an algorithm to store S in an array where the elements have been

arranged in ascending order.

Yufei Tao Quick Sort



Quick Sort

We will denote the input array as A, and describe the algorithm by
recursion.

Base Case. If n = 1, return directly.

Reduce. Otherwise, the algorithm runs the following steps:

1 Randomly pick an integer p in A—call it the pivot.

This can be done in O(1) time using RANDOM(1, n).

2 Re-arrange the integers in an array A′ such that

All the integers smaller than p are positioned before p in A′.
All the integers larger than p are positioned after p in A′.

3 Sort the part of A′ before p recursively.

4 Sort the part of A′ after p recursively.

Yufei Tao Quick Sort



Example

After Step 1 (suppose that 26 was randomly picked as the pivot):

5 91217 2628 3538 41 47 52686972 8388

p

After Step 2:

5 91217 26 28 3538 41 47 52686972 8388

p

After Steps 3 and 4:

5 9 12 17 26 28 35 38 41 47 52 68 69 72 83 88

p

Yufei Tao Quick Sort



Analysis of Quick Sort

Quick sort’s running time is not attractive in the worst case: its worst
case time is O(n2) (why?). However, quick sort is fast in
expectation—we will prove next that its expected time is O(n log n).
Remember: this holds on every input array A.

Remark: You may be wondering whether quick sort has any advantage

over merge sort, which guarantees O(n log n) in the worst case. The

answer is: no advantage in theory, but there is an advantage in

practice—quick sort permits a faster implementation that leads to a

smaller hidden constant compared to merge sort. We will discuss this in

the tutorial.

Yufei Tao Quick Sort



The rest of the slides will not be tested.

Yufei Tao Quick Sort



Analysis of Quick Sort

First, convince yourself that it suffices to analyze the number X of
comparisons. The running time is bounded by O(n + X ).

Next, we will prove that E[X ] = O(n log n).

Yufei Tao Quick Sort



Analysis of Quick Sort

Denote by ei the i-th smallest integer in S . Consider ei , ej for any i , j
such that i 6= j .

What is the probability that quick sort compares ei and ej?

This question—which seems to be difficult at first glance—has a
surprisingly simple answer. Let us observe:

Every element will be selected as a pivot precisely once.

ei and ej are not compared, if any element between them gets
selected as a pivot before them.

For example, consider i = 7 and j = 12. If e9 is the pivot, then
ei and ej will be separated by e9. There is no chance that ei
and ej can get compared in the subsequent execution.

Yufei Tao Quick Sort



Analysis of Quick Sort

Therefore, ei and ej are compared if and only if either one is the first
among ei , ei+1, ..., ej picked as a pivot.

The probability is 2/(j − i + 1) (random pivot selection).

Yufei Tao Quick Sort



Analysis of Quick Sort

Define random variable Xij to be 1, if ei and ej are compared. Otherwise,
Xij = 0. We thus have Pr[Xij = 1] = 2/(j − i + 1). That is,
E[Xij ] = 2/(j − i + 1).

Clearly, X =
∑

i,j Xij . Hence:

E[X ] =
∑
i,j

E[Xij ] =
∑
i,j

2

j − i + 1

= 2
n−1∑
i=1

n∑
j=i+1

1

j − i + 1

= 2
n−1∑
i=1

O(log(j − i + 1))

= 2
n−1∑
i=1

O(log n) = O(n log n).

Yufei Tao Quick Sort



Analysis of Quick Sort

As a final remark, the above analysis used the following fact:

1 + 1/2 + 1/3 + 1/4 + ... + 1/n = O(log n).

The left hand side is called the harmonic series, which is frequently
encountered in computer since.

Yufei Tao Quick Sort


