
Priority Queues (Binary Heaps)

Yufei Tao

Department of Computer Science and Engineering
Chinese University of Hong Kong

Yufei Tao Priority Queues (Binary Heaps)

Priority Queue

A priority queue stores a set S of n integers and supports the
following operations:

Insert(e): Adds a new integer to S .

Delete-min: Removes the smallest integer in S , and
returns it.

Yufei Tao Priority Queues (Binary Heaps)

Example

Suppose that the following integers are inserted into an initially empty
priority queue: 93, 39, 1, 26, 8, 23, 79, 54.

If next we perform a Delete-Min, the operation returns 1, after which
S = {93, 39, 26, 8, 23, 79, 54}.

The next Delete-Min returns 8, and leaves S = {93, 39, 26, 23, 79, 54}.

Unlike an ordinary queue (which obeys FIFO), a priority queue guar-
antees that the elements always leave in ascending order, regardless
of the order by which they are inserted.

Yufei Tao Priority Queues (Binary Heaps)

Next we will implement a priority queue using a data structure
called the binary heap to achieve the following guarantees:

O(n) space consumption

O(log n) insertion time

O(log n) delete-min time.

Yufei Tao Priority Queues (Binary Heaps)

Binary Heap

Let S be a set of n integers. A binary heap on S is a binary tree
T satisfying:

1 T is complete.

2 Every node u in T corresponds to a distinct integer in
S—the integer is called the key of u (and is stored at u).

3 If u is an internal node, the key of u is smaller than those of
its child nodes.

Note:

Condition 2 implies that T has n nodes.

Condition 3 implies that the key of u is the smallest in the subtree
of u.

Yufei Tao Priority Queues (Binary Heaps)

Example

Two possible binary heaps on S = {93, 39, 1, 26, 8, 23, 79, 54}:

1

39 8

26 2379 54

93

1

26 8

93 2339 54

79

The smallest integer of S must be the key of the root.

Yufei Tao Priority Queues (Binary Heaps)

Insertion

We perform insert(e) on a binary heap T as follows:

1 Create a leaf node z with key e, while ensuring that T is a complete
binary tree—notice that there is only one place where z can be
added.

2 Set u ← z .

3 If u is the root, return.

4 If the key of u > the key of its parent p, return.

5 Otherwise, swap the keys of u and p. Set u ← p, and repeat from
Step 3.

Yufei Tao Priority Queues (Binary Heaps)

Example

Assume that we want to insert 15 into the binary heap below:

1

39 8

26 2379 54

93

Yufei Tao Priority Queues (Binary Heaps)

Example

First, add 15 as a new leaf, making sure that we still have a complete
binary tree.

1

39 8

26 2379 54

1593

15 causes a violation by being smaller than its parent. This is fixed by a

swap with its parent; see next.

Yufei Tao Priority Queues (Binary Heaps)

Example

1

39 8

26 2315 54

93 79

15 still causes a violation, necessitating another swap, as shown next.

Yufei Tao Priority Queues (Binary Heaps)

Example

1

15 8

26 2339 54

93 79

No more violation. Insertion complete.

Yufei Tao Priority Queues (Binary Heaps)

Delete-Min

We perform a delete-min on a binary heap T as follows:

1 Report the key of the root.

2 Identify the rightmost leaf z at the bottom level of T .

3 Delete z , and store the key of z at the root.

4 Set u ← the root.

5 If u is a leaf, return.

6 If the key of u < the keys of the children of u, return.

7 Otherwise, let v be the child of u with a smaller key. Swap the keys
of u and v . Set u ← v , and repeat from Step 5.

Yufei Tao Priority Queues (Binary Heaps)

Example

Assume that we perform a delete-min from the binary heap below:

1

15 8

26 2339 54

93 79

Yufei Tao Priority Queues (Binary Heaps)

Example

First, find the rightmost leaf at the bottom level, namely, 79.

1

15 8

26 2339 54

93 79

Notice that the tree is still a complete binary tree after removing this leaf.

Yufei Tao Priority Queues (Binary Heaps)

Example

Remove the leaf, but place the value 79 in the root.

79

15 8

26 2339 54

93

79 causes a violation by being greater than its children. This is fixed by

swapping it with node 8, which is the child of the root with a smaller key.

See the next slide.

Yufei Tao Priority Queues (Binary Heaps)

Example

8

15 79

26 2339 54

93

Node 79 still has a violation, causing another swap as shown next.

Yufei Tao Priority Queues (Binary Heaps)

Example

8

15 23

26 7939 54

93

The final tree after the delete-min.

Yufei Tao Priority Queues (Binary Heaps)

How to Find the Rightmost Leaf at the Bottom Level

Before analyzing the running time of insert and delete-min, let us
first consider a sub-problem:

Given a complete binary tree T with n nodes, how to identify
quickly the rightmost leaf node at the bottom level of T .

Our aforementioned algorithms depend on a fast solution to the above.

Yufei Tao Priority Queues (Binary Heaps)

How to Find the Rightmost Leaf at the Bottom Level

Next, we give a clever algorithm for solving the sub-problem in O(log n)
time.

First, write the value of n in binary form. Think: How to do this in
O(log n) time using only the atomic operations we are allowed?

Skip the most significant bit. We will scan the remaining bits from left to
right, and descend as instructed by the next bit:

If the next bit is 0, we go to the left child of the current node.

Otherwise, go to the right child.

Yufei Tao Priority Queues (Binary Heaps)

Example

1

15 8

26 2339 54

93 79

Here n = 9, which is 1001 in binary. Skipping the first bit 1, we scan the
remaining bits and descend accordingly:

The 2nd leftmost bit is 0; so we turn left, and go to node 15.

The 3rd leftmost bit is 0; so we turn left, and go to node 39.

The 4th leftmost bit is 1; so we turn right, and go to node 79
(done).

Yufei Tao Priority Queues (Binary Heaps)

Analysis of Insertion and Delete-Min

We are now ready to prove that our insertion and delete-Min

algorithms finish in O(log n) time.

It suffices to point out the key facts:

Step 1 of the insertion algorithm (Slide 7) and Step 2 of the
delete-min algorithm (Slide 12) can be performed in O(log n) time,
using our solution to the previous sub-problem.

The rest of insertion ascends a root-to-leaf path, while that of
delete-min descends a root-to-leaf path. The time is O(log n) in
both cases.

Yufei Tao Priority Queues (Binary Heaps)

Now officially we have reached the following conclusion. We can
maintain a priority queue on a set S of elements such that:

At any moment, the space consumption is O(n), where n = |S |.

An insertion can be processed in O(log n) time.

A delete-min can be processed in O(log n) time.

Yufei Tao Priority Queues (Binary Heaps)

