
Merge Sort

Yufei Tao

Department of Computer Science and Engineering
Chinese University of Hong Kong

Yufei Tao Merge Sort



In this lecture, we will design the merge sort which sorts n elements in

O(n log n) time. The algorithm illustrates a technique called divide and

conquer, which is the most common and useful form of recursion in

computer science.

Yufei Tao Merge Sort



Recall:

The Sorting Problem

Problem Input:

A set S of n integers is given in an array of length n. The value of n is
inside the CPU (i.e., in a register).

Goal:

Design an algorithm to store S in an array where the elements have been

arranged in ascending order.

Yufei Tao Merge Sort



Example

Input:

...

5 91217 2628 3538 41 47 52686972 8388

16

Output:

...

5 9 12 17 26 28 35 38 41 47 52 68 69 72 83 88

16

Yufei Tao Merge Sort



Recall: The idea of recursion is to carry out two steps:

1 [Base]
Solve the problem trivially where the input size n is a constant.

2 [Reduce]
Argue that if we can solve the same problem with a size smaller
than n, we can solve the original problem (with size n).

Yufei Tao Merge Sort



Merge Sort

Base. If n = 1 (i.e., S has a single element), there is nothing to sort.
Return directly.

Reduce. Otherwise:

1 Recursively sort the first half of the array S (i.e., same problem but
with size n/2).

2 Recursively sort the second half of the array.

3 Merge the two halves of the array into the final sorted sequence
(details later).

Yufei Tao Merge Sort



Example

Input:

...

5 91217 2628 3538 41 47 52686972 8388

16

First step, sort the first half of the array by recursion.

...

5 91217 26 28 3538 41 47 52686972 83 88

16

sort recursively

Yufei Tao Merge Sort



Example

Second step, sort the second half of the array by recursion:

...

5 9 1217 26 28 3538 41 47 52 68 6972 83 88

16

sort recursively

Third step, merge the two halves.

...

5 9 12 17 26 28 35 38 41 47 52 68 69 72 83 88

16

Yufei Tao Merge Sort



Merging

We are looking at the following (sub-)problem.

There are two arrays—denoted as A1 and A2—of integers. Each
array has (at most) n/2 integers, which have been sorted in ascend-
ing order. The goal is to produce an array A with all the integers
in A1 and A2, sorted in ascending order.

The following shows an example of the input:

...

5 12917 2826 3538 41 47 52 68 6972 83 88

16

A2A1

Yufei Tao Merge Sort



Merging

At the beginning, set i and j to 1.

Repeat the following until i > n/2 or j > n/2:

1 If A1[i ] (i.e., the i-th integer of A1) is smaller than A2[j ], append
A1[i ] to A, and increase i by 1.

2 Otherwise, append A2[j ] to A, and increase j by 1.

Yufei Tao Merge Sort



Example

At the beginning of merging:

...

5 9 1217 26 28 3538 41 47 52 68 6972 83 88

16

A2A1

i j

A

Appending 5 to A:

...

5 9 1217 26 28 3538 41 47 52 68 6972 83 88

16

A2A1

i j

A

5

Yufei Tao Merge Sort



Example

Appending 9 to A:

...

5 9 1217 26 28 3538 41 47 52 68 6972 83 88

16

A2A1

i j

A

5 9

Appending 12 to A:

...

5 9 1217 26 28 3538 41 47 52 68 6972 83 88

16

A2A1

i j

A

5 9 12

Yufei Tao Merge Sort



Example

Appending 17 to A:

...

5 9 1217 26 28 3538 41 47 52 68 6972 83 88

16

A2A1

i j

A

5 9 12 17

And so on.

Yufei Tao Merge Sort



Running Time of Merge Sort

Let f (n) denote the worst-case running time of merge sort when executed
on an array of size n.

From the base of recursion, we have:

f (n) = O(1)

From the reduce part, we know:

f (n) ≤ 2f (n/2) + O(n)

where the term 2f (n/2) is because the recursion sorts two arrays each of

size n/2, and the term O(n) is the time of merging (convince yourself

this is true).

Yufei Tao Merge Sort



Running Time of Merge Sort

So it remains to solve the following recurrence:

f (n) ≤ c1

f (n) ≤ 2f (n/2) + c2n

where c1, c2 are constants (whose values we do not care). Using the
expansion method, we have:

f (n) ≤ 2f (n/2) + c2n

≤ 2(2f (n/4) + c2n/2) + c2n = 4f (n/4) + 2c2n

≤ 4(2f (n/8) + c2n/4) + 2c2n = 8f (n/8) + 3c2n

...

≤ 2i f (n/2i ) + i · c2n
...

(h = log2 n) ≤ 2hf (1) + h · c2n
≤ n · c1 + c2n · log2 n = O(n log n).

Yufei Tao Merge Sort



Running Time of Merge Sort

The previous discussion assumed n to be a power of 2. How do we
remove the assumption?

Hint: The rounding approach discussed in a previous lecture.

Yufei Tao Merge Sort



The form of recursion we used in merge sort is also called divide and

conquer. The name is fairly intuitive: we “divided” the input array into

two halves, “conquered” them separately (i.e., sorting them), and derived

the overall result. This form of recursion is frequently applied in computer

science—it can be utilized to solve numerous problems elegantly.

Yufei Tao Merge Sort



Recall that selection sort performs sorting in O(n2) time. Today, we have

significantly improved the running time to O(n log n). Interestingly, this

can no longer been improved asymptotically using the so-called

“comparison-based” approach—we will prove later in this course that any

comparison-based algorithm must incur Ω(n log n) time!

Yufei Tao Merge Sort


