k-Selection

Yufei Tao
Department of Computer Science and Engineering Chinese University of Hong Kong

In this lecture, we will put randomization to some real use, by using it to solve a non-trivial problem called k-selection elegantly and efficiently.

The k-Selection Problem

Problem: You are given a set S of n integers in an array, and also an integer $k \in[1, n]$. Design an algorithm to find the k-th smallest integer of S.

For example, suppose that $S=(53,92,85,23,35,12,68,74)$, and $k=3$. You should output 35.

This problem can be easily settled in $O(n \log n)$ time by sorting. Next, we will solve it in $O(n)$ expected time with randomization.

To illustrate the idea behind our algorithm, suppose that we pick an arbitrary element (say the first) v of S.

v														

Move elements around so that those smaller than v are placed before v, and those larger are placed after v. This requires only $O(n)$ time (no sorting required).

- If $x=k-1$, done- v is what we are looking for.
- If $x<k-1$, recurse by performing $(k-(x+1))$-selection on the y elements to the right of v.
- If $x>k-1$, recurse by performing k-selection on the x elements to the left of v.

Obstacle: x or y can be very small (0 if we are unlucky) such that we can throw away only few elements before recursion!

Wish: Make $x \geq n / 3$ and $y \geq n / 3$.
Anecdote: Randomly select v from the whole array! Wish comes true with probability $1 / 3$!

New obstacle: Would still fail with probability $2 / 3$.
New anecdote: Choose another v if we fail-3 repeats in expectation!

Algorithm

The rank of an integer v in S is the number of elements in S smaller than or equal to v.

For example, suppose that $S=(53,92,85,23,35,12,68,74)$. Then, the rank of 53 is 4 , and that of 12 is 1 .

Finding the rank of v in S (stored in an array) takes only $O(|S|)$ time.

Algorithm

(1) Randomly pick an integer v from S.
(2) Get the rank of v-let it be r.
(3) If r is not in $[n / 3,2 n / 3]$, repeat from Step 1 .
(c) Otherwise:
4.1 If $k=r$, return v.
4.2 If $k<r$, produce an array A containing all the integers of S strictly smaller than v. Recurse on A by looking for the k-th smallest element in A.
4.3 If $k>r$, produce an array A containing all the integers of S strictly larger than v. Recurse on A by looking for the $(k-r)$-th smallest element in A.

Example
Consider that we want to find the 10th smallest element from a set S of 12 elements:

17	26	38	28	41	72	83	88	5	9	12	35

Suppose that the v we randomly choose is 12 , whose rank is 3 . This is not in the range of $[4,8]$

So we repeat by randomly choosing another v from S. Suppose that this time $v=83$, whose rank is 11 . This is not good either.

Repeat by choosing yet another v, say, 35 , whose rank is 7 . We generate an array with only the elements larger than 35 :

38	41	72	83	88

Recurse by finding the 3rd smallest element in this array.

Cost Analysis

Step 1 (on Slide 7) takes $O(1)$ time.
Step 2 takes $O(n)$ time.
How many times do we have to repeat the above two steps?
With a probability $1 / 3$, we can proceed to Step $3 \Rightarrow$ need to repeat only 3 times in expectation!

When we are at Step 3, A has at most $\lceil 2 n / 3\rceil$ elements left.

Cost Analysis

Let $f(n)$ be the expected running time of our algorithm on an array of size n.

We know from the earlier analysis:

$$
\begin{aligned}
& f(1) \leq O(1) \\
& f(n) \leq O(n)+f(\lceil 2 n / 3\rceil)
\end{aligned}
$$

Solving the recurrence gives $f(n)=O(n)$ (master theorem).

It is worth mentioning that the k-selection problem can actually be solved in $O(n)$ time deterministically. However, the algorithm is much more complicated-this demonstrates again the power of randomization.

