
Hashing

Yufei Tao

Department of Computer Science and Engineering
Chinese University of Hong Kong

Yufei Tao Hashing

In this lecture, we will revisit the dictionary search problem, where we
want to locate an integer v in a set of size n or declare the absence of v .
Recall that binary search solves the problem in O(log n) time. We will
bring down the cost to O(1) in expectation.

Towards the purpose, we will learn our first randomized data structure in

this course. The structure is called the hash table.

Yufei Tao Hashing

The Dictionary Search Problem (Redefined)

S is a set of n integers. We want to preprocess S into a data structure so
that queries of the following form can be answered efficiently:

Given a value v , a query asks whether v ∈ S .

We will measure the performance of the data structure by examin-
ing its:

Space consumption: How many memory cells occupied.

Query cost: Time of answering a query.

Preprocessing cost: Time of building the data structure.

Yufei Tao Hashing

Dictionary Search—Solution Based on Binary Search

We can solve the problem by sorting S into an array of length n, and
using binary search to answer a query. This achieves:

Space consumption: O(n).

Query cost: O(log n).

Preprocessing cost: O(n log n).

Yufei Tao Hashing

Dictionary Search—This Lecture (the Hash Table)

We will improve the previous solution in expectation:

Space consumption: O(n).

Query cost: O(log n) ⇒ O(1) in expectation.

Preprocessing cost: O(n log n) ⇒ O(n).

Yufei Tao Hashing

Hashing

Main idea: divide S into a number m of disjoint subsets such that only
one subset needs to be searched to answer any query.

Let us assume that every integer is in [1,U] (we will revisit this
assumption at the end).
Denote by [m] the set of integers from 1 to m.

A hash function h is a function from [U] to [m]. Namely, given
any integer k , h(k) returns an integer in [m].

The value h(k) is called the hash value of k .

Yufei Tao Hashing

Hash Table – Preprocessing

First, choose an integer m > 0, and a hash function h from Z to [m].

Then, preprocess the input S as follows:

1 Create an array H of length m.

2 For each i ∈ [1,m], create an empty linked list Li . Keep the head
and tail pointers of Li in H[i].

3 For each integer x ∈ S :

Calculate the hash value h(x).
Insert x into Lh(x).

Space consumption: O(n + m).
Preprocessing time: O(n + m).

We will always choose m = O(n), so O(n + m) = O(n).

Yufei Tao Hashing

Hash Table – Querying

We answer a query with value v as follows:

1 Calculate the hash value h(v).

2 Scan the whole Lh(v). If v is not found, answer “no”; otherwise,
answer “yes”.

Query time: O(|Lh(v)|), where |Lh(v)| is the number of elements in
Lh(v).

Yufei Tao Hashing

Example

Let S = {34, 19, 67, 2, 81, 75, 92, 56}. Suppose that we choose m = 5,
and h(k) = 1 + (k mod m).

NIL

H

75

81

67

56

NIL

NIL

2 NIL92

NIL1934

L1

L2

L3

L4

L5

To answer a query with search value 57, we scan all the elements in L3,

and answer “no”. For this hash function, the maximum query time is the

cost of scanning a linked list of 3 elements.

Yufei Tao Hashing

Example

Let S = {34, 19, 67, 2, 81, 75, 92, 56}. Suppose that we choose m = 5,
and h(k) = 2.

H

758167 56 NIL2

NIL

1934

L1

L2

L3

L4

L5

92

NIL

NIL

NIL

For this hash function, the maximum query time is the cost of scanning a

linked list of 8 elements (i.e., the worst possible).

Yufei Tao Hashing

It is clear that a good hash function should create linked lists of
roughly the same size, i.e., “spreading out” the elements of S as
evenly as possible.

Next we will introduce a technique that can choose a good hash function
to guarantee O(1) expected query time.

Yufei Tao Hashing

Let H be a family of hash functions from [U] to [m]. H is universal if the
following holds:

Let k1, k2 be two distinct integers in [U]. By picking a function
h ∈ H uniformly at random, we guarantee that

Pr[h(k1) = h(k2)] ≤ 1/m.

Next, we will first prove that universality gives us the desired O(1)
expected query time. Then, we will describe a way to obtain such
a good hash function.

Yufei Tao Hashing

Analysis of Query Time under Universality

We focus on the case where q does not exist in S (the case where it does
is similar). Recall that our algorithm probes all the elements in the linked
list Lh(q). The query cost is therefore O(|Lh(q)|).

Define random variable Xi (i ∈ [1, n]) to be 1 if the i-th element e of S
has the same hash value as q (i.e., h(e) = h(q)), and 0 otherwise. Thus:

|Lh(q)| =
n∑

i=1

Xi

Yufei Tao Hashing

Analysis of Query Time under Universality

By universality, Pr[Xi = 1] ≤ 1/m, meaning that

E[Xi] = 1 · Pr[Xi = 1] + 0 · Pr[Xi = 0]

≤ 1/m.

Hence:

E[|Lh(q)|] =
n∑

i=1

E[Xi] ≤ n/m.

By choosing m = Θ(n), we have n/m = Θ(1).

Yufei Tao Hashing

Designing a Universal Function

We now construct a universal family H of hash functions from [U] to [m].

Pick a prime number p such that p ≥ m and p ≥ U.

For every α ∈ {1, 2, ..., p−1}, and every β ∈ {0, 1, ..., p−1}, define:

hα,β(k) = 1 + (((αk + β) mod p) mod m).

This defines p(p − 1) hash functions, which constitute our H.

The proof of universality can be found in the appendix, but will not
be tested in quizzes and exams.

Yufei Tao Hashing

Existence of the Prime Number

You may be wondering why it is always possible to choose a desired
prime number p.

Recall that the RAM model is defined with a word length w , namely, the
number of bits in a word. Hence, U ≤ 2w − 1.

Number theory shows that there is at least one prime number between x
and 2x . Hence, one can prepare in advance such a prime number p in the
range [2w , 2w+1], and use this p to construct a universal hash family.

Remark: If n is the size of the underlying problem, the RAM
model (typically) assumes that w = Θ(log n), i.e., asymptotically
the same number of bits to encode the value of n in binary.

Yufei Tao Hashing

Now we have shown that, for any set S of n integers, it is always possible
to construct a hash table with the following guarantees on the dictionary
search problem:

Space O(n).

Preprocessing time O(n).

Query time O(1) in expectation.

Yufei Tao Hashing

Appendix: Proof of Universality
(Will Not Be Tested)

Yufei Tao Hashing

The Prime Ring

Denote by Zp the set of integers {0, 1, ..., p − 1}. Zp forms a
commutative ring under “+” and “·”, both modulo p. This means:

Zp is closed under + and ·, both modulo p.

+ modulo p satisfies commutativity and associativity.

a + b = b + a (mod p) and a + b + c = a + (b + c) (mod p)

+ modulo p has a zero element, that is, 0 + a = a (mod p).

Every element a has an additive inverse −a, that is, a + (−a) = 0
(mod p).

· modulo p satisfies commutativity and associativity.

a · b = b · a (mod p) and a · b · c = a · (b · c) (mod p)

· modulo p has a one element, that is, 1 · a = a (mod a).

+ and · modulo p satisfy distributivity.

a · (b + c) = a · b + a · c (mod p)
(b + c) · a = b · a + c · a (mod p)

Yufei Tao Hashing

The Prime Ring

The ring Zp has several crucial properties. Let us start with:

Lemma: Let a be a non-zero element in Zp. Then, a · j 6= a · k
(mod p) for any j , k ∈ Zp with j 6= k .

Proof: Suppose without loss of generality j > k . Assume a · j = a · k
(mod p), then a · (j − k) = 0 (mod p). This means that a · (j − k) must
be a multiple of p. Since p is prime, either a or j − k must be a multiple
of p. This is impossible because a and j − k are non-zero elements in
Zp.

The lemma implies that a · 0, a · 1, ..., a · (p − 1) must take unique values

in {0, 1, ..., p − 1}.

Yufei Tao Hashing

The Prime Ring

The previous lemma immediately implies:

Corollary: Every non-zero element a has a unique multiplicative
inverse a−1, namely, a · a−1 = 1 (mod p).

In other words, Zp is a division ring.

Yufei Tao Hashing

The Prime Ring

The next property then follows:

Lemma: Every equation a · x + b = c (mod p) where a, b, c are
in Zp and a 6= 0 has a unique solution in Zp.

Proof:

a · x = c − b (mod p)

⇒ x = a−1 · (c − b) (mod p)

Yufei Tao Hashing

Proof of Universality

Next, we will prove that the hash family H we constructed in Slide 15 is
universal. As before, let k1 and k2 be distinct integers in [U].

Fact 1: Let

gα,β(k1) = (α · k1 + β) mod p

gα,β(k2) = (α · k2 + β) mod p

Then, gα,β(k1) 6= gα,β(k2).

Proof: Otherwise, it must hold that

α · k1 + β = α · k2 + β (mod p)

⇒ α · (k1 − k2) = 0 (mod p)

which is not possible. .

Yufei Tao Hashing

Proof of Universality

How many different choices are there for the pair (g(k1), g(k2))? The
answer is at most p(p − 1) according to Fact 1: there are p2 possible
pairs in Zp × Zp but we need to exclude the p pairs where the two values
are the same.

Recall that H has p(p − 1) functions.

Next, we will prove a one-to-one mapping between the possible choices of

(g(k1), g(k2)) and the hash functions in H.

Yufei Tao Hashing

Proof of Universality

Fact 2: Fix any two x , y ∈ Zp such that x 6= y . There is a unique
pair (α, β)—with α ∈ {1, 2, ..., p − 1} and β ∈ {0, 1, ..., p − 1}—
that makes gα,β(k1) = x and gα,β(k2) = y .

Proof: Suppose that h is determined by α, β selected as explained in
Slide 15. Thus:

α · k1 + β = x (mod p)

α · k2 + β = y (mod p)

Hence:

α · (k1 − k2) = x − y (mod p)

⇒ α = (k1 − k2)−1 · (x − y) (mod p)

⇒ β = x − (k1 − k2)−1 · (x − y) · k1 (mod p)

Yufei Tao Hashing

Proof of Universality

Let P be the set of pairs (x , y) such that x , y ∈ Zp and x 6= y .

We know that by choosing α, β randomly in their respective ranges, we
are essentially picking a pair (x , y) for (gα,β(k1), gα,β(k2)) uniformly at
random.

Notice that h(k1) = h(k2) if and only if gα,β(k1) = gα,β(k2) (mod m).

So now the question boils down to: how many pairs (x , y) in P satisfy

x = y (mod m)?

Yufei Tao Hashing

Proof of Universality

How many pairs (x , y) in P satisfy x = y (mod m)?

For x = 0, y can take m, 2m, 3m, ... – definitely no more that
dp/me − 1 ≤ (p − 1)/m choices

For x = 1, y can take m + 1, 2m + 1, 3m + 1, ... – definitely no more
that dp/me − 1 ≤ (p − 1)/m choices

...

Hence, the number of such pairs is no more than p(p − 1)/m = |P|/m.

Now we conclude that the probability of h(k1) = h(k2) is at most 1/m.

Yufei Tao Hashing

