Basic Concepts and Representation Methods of Graphs

Yufei Tao

Department of Computer Science and Engineering Chinese University of Hong Kong

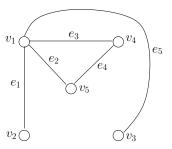
Undirected Graphs

An undirected graph is a pair of (V, E) where:

- V is a set of elements, each of which called a node.
- E is a set of unordered pairs {u, v} such that u and v are nodes.

A node may also be called a vertex. We will refer to V as the vertex set or the node set of the graph, and E the edge set.

Example



This is an undirected graph where there are 5 vertices $v_1, v_2, ..., v_5$, and 5 edges $e_1, e_2, ..., e_5$.

Directed Graphs

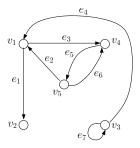
An directed graph is a pair of (V, E) where:

- V is a set of elements, each of which called a node.
- E is a set of pairs (u, v) where u and v are nodes in V. We say that there is a (directed) edge from u to v.

A node may also be called a vertex. We will refer to V as the vertex set or the node set of the graph, and E the edge set.

A (directed) edge (u, v) is said to be an outgoing edge of u, and an incoming edge of v. Accordingly, v is an out-neighbor of u, and u an in-neighbor of v.

Example



This is an directed graph (V, E) where there are 5 vertices $v_1, v_2, ..., v_5$, and 7 edges $e_1, e_2, ..., e_7$. Note that every edge has a direction. Edge e_6 , for instance, is an outgoing edge of v_5 , and an incoming edge of v_4 .

Degrees

- In an undirected graph, the degree of a vertex *u* is the number of edges of *u*.
- In a directed graph, the out-degree of a vertex u is the number outgoing edges of u, and its in-degree is the number of its incoming edges.

Example $v_1 \xrightarrow{e_3} v_4 \xrightarrow{e_5} v_1 \xrightarrow{e_3} v_4$

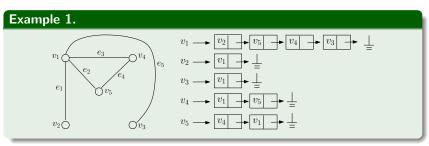
v2(

In the left graph, the degree of v_5 is 2. In the right graph, the out-degree of v_3 is 2, and its in-degree is 1.

Next, we discuss two common ways to store a graph: **adjacency list** and **adjacency matrix**. In both cases, we represent each vertex in V using a unique id in 1, 2, ..., |V|.

Adjacency List – Undirected Graphs

Each vertex $u \in V$ is associated with a linked list that enumerates all the vertices that are connected to u.

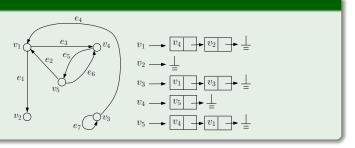


Space =
$$O(|V| + |E|)$$
.

Adjacency List – Directed Graphs

Each vertex $u \in V$ is associated with a linked list that enumerates all the vertices $v \in V$ such that there is an edge from u to v.

Example 2.

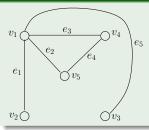


Space = O(|V| + |E|).

Adjacency Matrix – Undirected Graphs

A $|V| \times |V|$ matrix A where A[u, v] = 1 if $(u, v) \in E$, or 0 otherwise.

Example 3.



	v_1	<i>V</i> ₂	<i>V</i> 3	V ₄	<i>V</i> ₅
v_1	0	1	1	1	1
V ₂	1	0	0	0	0
V3	1	0	0	0	0
	1	0	0	0	1
	1	0	0	1	0

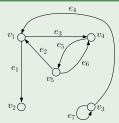
- A must be symmetric.
- Space = $O(|V|^2)$.

Think: How to store A so that, for any vertices $u, v \in V$, we can find out if they have an edge in constant time?

Adjacency Matrix - Directed Graphs

Defined in the same way as in the undirected case.

Example 4.



	ı			ı	
	v_1	<i>V</i> ₂	<i>V</i> 3	<i>V</i> ₄	<i>V</i> ₅
v_1	0	1	0	1	0
<i>V</i> ₂	0	0	0	0	0
<i>V</i> ₃	1	0	1	0	0
V ₄	0	0	0	0	1
<i>V</i> ₅	1	0	0	1	0

- A may not be symmetric.
- Space = $O(|V|^2)$.