
Dynamic Arrays and Amortized Analysis

Yufei Tao

Department of Computer Science and Engineering
Chinese University of Hong Kong

Yufei Tao Dynamic Arrays and Amortized Analysis



As mentioned earlier, one drawback of arrays is that their lengths are
fixed. This makes it difficult when you want to use an array to store a set
that may continuously grow and shrink with time.

In this lecture, we will discuss clever tricks that allow us to design an

array whose size can be varied efficiently! Our discussion also serves as a

golden opportunity to introduce the method of amortized analysis.

Yufei Tao Dynamic Arrays and Amortized Analysis



Dynamic Array Problem

Let S be a multi-set of integers that grows with time. At the beginning,
S is empty. Over time, the integers of S are added by the following
operation:

insert(e): which adds an integer e into S .

At any moment, let n be the number of elements in S . We want to store
all the elements of S in an array A satisfying:

1 A has length O(n)

2 If an integer x was the i-th (i ≥ 1) inserted, then A[i ] = x (i.e., x is
at the i-th position of the array).

This problem is dynamic, namely, the value of n continuously grows
over time (initially, n = 0). The above requirements must be
satisfied after every insertion.

Yufei Tao Dynamic Arrays and Amortized Analysis



Naive Algorithm

Perform insert(e) as follows:

If n = 0, then set n to 1. Initialize an array A of length 1,
containing just e itself.

Otherwise (i.e., n ≥ 1):

Increase n by 1.
Initialize an array A′ of length n.
Copy all the n − 1 elements of A over to A′.
Set A′[n] = e.
Destroy A, and replace it with A′.

This algorithm spends O(n) time on the n-th insertion. Altogether,
it takes O(n2) time to do n insertions.

Yufei Tao Dynamic Arrays and Amortized Analysis



We will improve the time of inserting n elements dramatically to
O(n) (this is clearly optimal because every insertion must take at
least constant time)! As a tradeoff, our array A may have a length
up to 2n, which is still O(n).

Yufei Tao Dynamic Arrays and Amortized Analysis



A Better Algorithm

We say that an array A is full, if the number of integers therein is already
equal to its length.

For example, if A was initialized with length 8, it is non-full if it has
only up to 7 integers.

Yufei Tao Dynamic Arrays and Amortized Analysis



A Better Algorithm

Perform insert(e) as follows:

If n = 0, then set n to 1. Initialize an array A of length 2,
containing just e itself.

Otherwise (i.e., n ≥ 1), append e to A, and increase n by 1. If A is
full, do the following

Initialize an array A′ of length 2n.
Copy all the n elements of A over to A′.
Destroy A, and replace it with A′.

Yufei Tao Dynamic Arrays and Amortized Analysis



Example

n = 1

n = 2

n = 3

n = 4

n = 5

...

n = 8

Yufei Tao Dynamic Arrays and Amortized Analysis



Analysis

Cost of insertion when inserting the n-th element:

If A is non-full after the insertion, O(1).

Otherwise, O(n)—the time incurred in expanding A.

Suppose that the expansion time is at most cn, for some
constant c > 0.

Yufei Tao Dynamic Arrays and Amortized Analysis



Analysis

Array expansions happen infrequently:

Initially, size 2.

First expansion: size from 2 to 4.

Second expansion: from 4 to 8.

...

The i-th expansion: from 2i to 2i+1.

After n insertions, the size of A is at most 2n. Hence:

2i+1 ≤ 2n ⇒ i ≤ log2 n

That is, there can be no more than log2 n array expansions.

Yufei Tao Dynamic Arrays and Amortized Analysis



Analysis

Therefore, the total cost of n insertions is bounded by:(
n∑

i=1

O(1)

)
+

log2 n∑
i=1

c · 2i

 (1)

where the first term corresponds to the compulsory constant time spent
on each insertion, and the second term corresponds to the total cost of
expanding.

Formula (1) evaluates to O(n).

Yufei Tao Dynamic Arrays and Amortized Analysis



Cleverer Analysis

Next, we give an alternative analysis that proves the same conclusion
with an elegant charging argument.

Our algorithm maintains an invariant:

After an array expansion, the new array has size 2n, namely, offering
n empty positions.

Yufei Tao Dynamic Arrays and Amortized Analysis



Cleverer Analysis

Suppose that an array expansion occurs at n, which takes c · n time.

⇒ The previous expansion happened at n/2.

⇒ n/2 empty positions in the previous array.

⇒ n/2 insertions have taken place since the previous expansion.

⇒ Charge the c · n cost over those n/2 insertions.

⇒ Each insertion bears additional c·n
n/2 = 2c = O(1) cost.

Therefore, the total cost of n insertions is O(n).

Yufei Tao Dynamic Arrays and Amortized Analysis



Example

n = 1

n = 2

n = 3

n = 4

n = 5

...

n = 8

expanding cost charged on elements 3-4

expanding cost charged on the 2nd element

expanding cost charged on elements 5-8

Yufei Tao Dynamic Arrays and Amortized Analysis



The Stack-with-Array Problem

Let S be a multi-set of integers that grows with time. At the beginning,
S is empty. We must support the following stack operations:

push(e): which adds an integer e into S .

pop: which removes from S the most recently inserted integer.

At any moment, let m be the number of elements in S . We want to store
all the elements of S in an array A satisfying:

1 A has length O(m)

2 A[1] is the least recently inserted element, A[2] the second least
recently inserted, ..., A[m] the most recently inserted.

We will denote by n the number of operations processed so far.

Yufei Tao Dynamic Arrays and Amortized Analysis



The Stack-with-Array Problem

We will give an algorithm for maintaining such an array by handling
n operations in O(n) time, namely, each operation is processed in
O(1) amortized time.

Yufei Tao Dynamic Arrays and Amortized Analysis



The Stack-with-Array Problem

We say that

1 (Same as before) an array A is full, if the number of integers therein
is equal to its length.

2 A is sparse if the number of integers therein is equal to 1/4 of its
length (we will ensure that the length is a multiple of 4).

We will stick to the invariant that, when an array is created, it is always

half full, namely, if its size is s, it contains exactly s/2 elements.

Yufei Tao Dynamic Arrays and Amortized Analysis



Push

Perform push(e) in the same way as an insertion in the dynamic array

problem.

Yufei Tao Dynamic Arrays and Amortized Analysis



Pop

Perform pop as follows:

Return the last element of A, and decrease n by 1. If A is sparse,
shrink the array as follows:

Initialize an array A′ of length 2n.
Copy all the n elements of A over to A′.
Destroy A, and replace it with A′.

Yufei Tao Dynamic Arrays and Amortized Analysis



Example

Next, we use the algorithm to perform 11 pushes and then 9 pops on an
initially empty stack.

n = 4, push

n = 8, push

...

n = 1, push

n = 2, push

...

n = 11, push

...

Yufei Tao Dynamic Arrays and Amortized Analysis



Example

n = 17 pop

n = 18, pop

n = 19, pop

n = 20, pop

...

Yufei Tao Dynamic Arrays and Amortized Analysis



Cost Analysis

We will prove that our algorithm performs any sequence of n operations
(each being either a push or a pop) using O(n) time in total, i.e., O(1)
amortized time per operation.

We will focus on the cost of array expanding and array
shrinking—collectively referred to as an overhaul.

Applying a charging argument, we will charge the cost of an overhaul
only on those operations that occurred between the last overhaul and the
current one. In this way, we ensure that no operations are charged more
than once. We will prove that each operation is charged at most O(1)
cost, which indicates that the total cost of all operations is O(n).

Yufei Tao Dynamic Arrays and Amortized Analysis



Cost Analysis—Array Expansion

size s

size 2s

s/2

charge the cost of the array expansion on
the push operations that entered these elements

The cost of the expansion is at most c1 · s for some constant c1. By
charging the cost over the s/2 push operations as indicated above, each
operation bears at most 2c1 cost.

Think: Why must these operations have occurred between the last
overall and the current one?

Yufei Tao Dynamic Arrays and Amortized Analysis



Cost Analysis—Array Shrinking

size s

s/2

charge the cost of the shrinking on the pop
operations that removed those s/4 elements.

recall that the array had s/2 elements when it
was created. among them, s/4 have been removed.

The cost of the shrinking is at most c2 · s for some constant c2. By
charging the cost over the s/4 pop operations as indicated above, each
operation bears at most 4c2 cost.

Think: Why must these operations have occurred between the last
overall and the current one?

Yufei Tao Dynamic Arrays and Amortized Analysis


