
Binary Search Tree (Part 1)

Yufei Tao

Department of Computer Science and Engineering
Chinese University of Hong Kong

Yufei Tao Binary Search Tree (Part 1)

This and the next lecture will be devoted to the most powerful data
structure of this course: the binary search tree (BST). This is without a
doubt one of the most important data structures in computer science.

In this lecture, we will focus on the static version of the BST (namely,

without considering insertions and deletions), leaving the dynamic version

to the next lecture.

Yufei Tao Binary Search Tree (Part 1)

We will discuss the BST on a specific problem:

Dynamic Predecessor Search

Let S be a set of integers. We want to store S in a data structure to
support the following operations:

A predecessor query: give an integer q, find its predecessor in S ,
which is the largest integer in S that does not exceed q;

Insertion: adds a new integer to S ;

Deletion: removes an integer from S .

Yufei Tao Binary Search Tree (Part 1)

Example

Suppose that S = {3, 10, 15, 20, 30, 40, 60, 73, 80}.

The predecessor of 23 is 20

The predecessor of 15 is 15

The predecessor of 2 does not exist.

Note that a predecessor query is more general (why?) than a “dic-
tionary lookup”. Recall that, given a value q, a dictionary lookup
determines whether q ∈ S .

Yufei Tao Binary Search Tree (Part 1)

We will learn a version of the BST that guarantees:

O(n) space consumption.

O(log n) time per predecessor query (hence, also per dictionary
lookup).

O(log n) time per insertion

O(log n) time per deletion

where n = |S |. Note that all the above complexities hold in the worst

case.

Yufei Tao Binary Search Tree (Part 1)

Binary Search Tree (BST)

A BST on a set S of n integers is a binary tree T satisfying all the
following requirements:

T has n nodes.

Each node u in T stores a distinct integer in S , which is called the
key of u.

For every internal u, it holds that:

– The key of u is larger than all the keys in the left subtree of u.
– The key of u is smaller than all the keys in the right subtree of

u.

Yufei Tao Binary Search Tree (Part 1)

Example

Two possible BSTs on S = {3, 10, 15, 20, 30, 40, 60, 73, 80}.

40

15 73

3010 60 80

3 20 30

15 73

10

60

80

3 20

40

Yufei Tao Binary Search Tree (Part 1)

Balanced Binary Tree

A binary tree T is balanced if the following holds on every internal node
u of T :

The height of the left subtree of u differs from that of the right
subtree of u by at most 1.

If u violates the above requirement, we say that u is imbalanced.

Yufei Tao Binary Search Tree (Part 1)

Example

40

15 73

3010 60 80

3 20 30

15 73

10

60

80

3 20

40

Balanced Not balanced (nodes 40
and 60 are imbalanced)

Yufei Tao Binary Search Tree (Part 1)

Height of a Balanced Binary Tree

Theorem: A balanced binary tree with n nodes has height
O(log n).

Proof: Denote the height as h. We will show that a balanced binary tree
with height h must have Ω(2h/2) nodes.

Once this is done, it will then follow that there is a constant c > 0 such
that:

n ≥ c · 2h/2

⇒ 2h/2 ≤ n/c

⇒ h/2 ≤ log2(n/c)

⇒ h = O(log n).

Yufei Tao Binary Search Tree (Part 1)

Height of a Balanced Binary Tree

Let f (h) be the minimum number of nodes in a balanced binary tree with
height h. It is clear that:

f (1) = 1

f (2) = 2

f (1) f (2)

Yufei Tao Binary Search Tree (Part 1)

Height of a Balanced Binary Tree

In general, for h ≥ 3:

f (h) = 1 + f (h − 1) + f (h − 2)

f (h− 1) f (h− 2)

Yufei Tao Binary Search Tree (Part 1)

Height of a Balanced Binary Tree

When h is an even number:

f (h) = 1 + f (h − 1) + f (h − 2)

> 2 · f (h − 2)

> 22 · f (h − 4)

...

> 2h/2−1 · f (2)

= 2h/2

Yufei Tao Binary Search Tree (Part 1)

Height of a Balanced Binary Tree

When h an odd number (i.e., h ≥ 3):

f (h) > f (h − 1)

> 2(h−1)/2

= 2h/2/
√

2

= Ω(2h/2)

Yufei Tao Binary Search Tree (Part 1)

Predecessor Query

Suppose that we have created a balanced BST T on a set S of n
integers. A predecessor query with search value q can be answered by
descending a single root-to-leaf path:

1 Set p ← −∞ (p will contain the final answer at the end)

2 Set u ← the root of T

3 If u = nil, then return p

4 If key of u = q, then set p to q, and return p

5 If key of u > q, then set u to the left child (now u = nil if there is
no left child), and repeat from Line 3.

6 Otherwise, set p to the key of u, u to the right child, and repeat
from Line 3.

Yufei Tao Binary Search Tree (Part 1)

Example

40

15 73

3010 60 80

3 20

Suppose that we want to find the predecessor of 35.

Start from u = root 40. Since 40 > 35, the predecessor cannot be in the

right subtree of 40. So we move to the left child of 40. Now u = node

15.

Yufei Tao Binary Search Tree (Part 1)

Example

40

15 73

3010 60 80

3 20

Since 15 < 35, the predecessor cannot be in the left subtree of 15.

Update p to 15, because this is the predecessor of 35 so far, if we do not

consider the right subtree of 15. Now, move u to the right child, namely,

node 30.

Yufei Tao Binary Search Tree (Part 1)

Example

40

15 73

3010 60 80

3 20

Since 30 < 35, the predecessor cannot be in the left subtree of 30.

Update p to 30. We need to move to the right child, but 30 does not

have a right child. So the algorithm terminates here with p = 30 as the

final answer.

Yufei Tao Binary Search Tree (Part 1)

Analysis of Predecessor Query Time

Obviously, we spend O(1) time at each node visited. Since the BST is
balanced, we know that its height is O(log n).

Therefore, the total query time is O(log n).

Yufei Tao Binary Search Tree (Part 1)

Successors

The opposite of predecessors are successors.

The successor of an integer q in S is the smallest integer in S that is no
smaller than q.

Suppose that S = {3, 10, 15, 20, 30, 40, 60, 73, 80}.

The successor of 23 is 30

The successor of 15 is 15

The successor of 81 does not exist.

Yufei Tao Binary Search Tree (Part 1)

Finding a Successor

Given an integer q, a successor query returns the successor of q in S .

By symmetry, we know from the earlier discussion (on predecessor

queries) that a predecessor query can be answered using a balanced BST

in O(log n) time, where n = |S |.

Yufei Tao Binary Search Tree (Part 1)

