CSCI2100: Regular Exercise Set 8

Prepared by Yufei Tao

Problem 1. Prove: A tree with n nodes has $n-1$ edges.
Problem 2 (Max Heap). The binary heap we discussed in the class is called the min-heap because of the delete-min operation. Conversely, a max-heap on a set S of integers aims to support insertions and the following delete-max operation:

- Delete-max: Reports the largest integer in S, and removes it from S.

Describe how a min-heap can be used to implement a max-heap without changing its structure and algorithms. Your max-heap must still use $O(|S|)$ space, and support an insertion and a delete-max operation in $O(\log |S|)$ time.

Problem 3* (Priority Queue with Attrition). Let S be a dynamic set of integers. At the beginning S is empty. We want to support the following operations:

- Insert-with-Attrition (e) : First removes all integers in S that are greater than e, and then adds e to S.
- Delete-Min: Removes and returns the smallest integer of S.

For example, suppose we perform the following sequence of operations:

1. Insert-with-Attrition(83)
2. Insert-with-Attrition(5)
3. Insert-with-Attrition(10)
4. Insert-with-Attrition(15)
5. Insert-with-Attrition(12)
6. Delete-Min
7. Delete-Min

After Operation 3, $S=\{5,10\}$ (note that 83 has been deleted by Operation 2). After Operation $5, S=\{5,10,12\}$. After Operation $6, S=\{10,12\}$.

Describe a data structure with the following guarantees:

- At all times, the space consumption is $O(|S|)$.
- Any sequence of n operations (each being an insert-with-attrition or delete-min) is processed with $O(n)$ time, i.e., $O(1)$ amortized time per operation.

Problem 4 (Textbook Exercise 6.5-9). Suppose that we have k arrays $A_{1}, A_{2}, \ldots, A_{k}$ of integers, such that each array has been sorted in ascending order. Let n be the total number of integers in those arrays. Describe an algorithm to produce an array that sorts all the n integers in ascending order (you may assume that no integer exists in two arrays). Your algorithm must finish in $O(n \log k)$ time.

For example, suppose that $k=3$, and that the three arrays are $(2,23,32,35,37),(5,10)$, and $(33,58,82)$. Then you should produce an array containing $(2,5,10,23,32,33,35,37,58,82)$.

