CSCI2100: Regular Exercise Set 7

Prepared by Yufei Tao

Problems marked with an asterisk may be difficult.

Problem 1. Let S_{1} and S_{2} be two sets of integers (they are not necessarily disjoint). We know that $\left|S_{1}\right|=\left|S_{2}\right|=n$ (i.e., each set has n integers). Design an algorithm to report the distinct integers in $S_{1} \cup S_{2}$ using $O(n)$ expected time. For example, if $S_{1}=\{1,5,6,9,10\}$ and $S_{2}=\{5,7,10,13,15\}$, you should output: $1,5,6,7,9,10,13,15$.

Problem 2 (No Single Hash Function Works for All Sets). Let U and m be integers satisfying $U \geq m^{2}$. Fix a hash function h from $[U]$ to $[m]$, where $[x]$ represents the set of integers $\{1,2, \ldots, x\}$. Prove that there must be a set $S \subseteq[U]$ such that (i) $|S|=m$, and (ii) h maps all the elements of S to the same hash value.

Problem 3*. Let S be a multi-set of n integers. Define the frequency of an integer x as the number of occurrences of x in S. Design an algorithm to produce an array that sorts the distinct integers in S by frequency. Your algorithm must terminate in $O(n)$ expected time. For example, suppose that $S=\{75,123,65,75,9,9,65,9,93\}$. Then you should output (123, 93, 65, 75, 9). Note that if two integers have the same frequency, their relative ordering is unimportant. For example, $(93,123,75,65,9)$ is another legal output.

Problem 4*. Let S be a set of n key-value pairs of the form (k, v), where k is the key and v is the value. Preprocess S into a data structure so that the following queries can be answered efficiently. Given a pair $\left(q_{k}, q_{v}\right)$, a query

- Returns nothing if S contains no pair with key q_{k};
- Otherwise, it returns the number of pairs $(k, v) \in S$ such that $k=q_{k}$ and $v \leq q_{v}$.

Define the frequency of a key k as the number of pairs in S with key k. Define f as the maximum frequency of all keys. Your structure must use $O(n)$ space, and answer a query in $O(\log f)$ expected time. Furthermore, it must be possible to construct the structure $O(n \log f)$ time.

For example, suppose that $S=\{(75,35),(123,6),(65,32),(75,22),(9,1),(9,10),(65,74),(9,8)$, $(93,23)\}$. Then, given $(63,33)$, the query returns nothing. Given $(65,33)$, the query returns 1 . Given (65,2), the query returns 0 . In this example, $f=3$.

Problem 5** (Dynamic Hashing). Consider the following dynamic dictionary search problem. Let S be a dynamic set of integers. At the beginning, S is empty. We want to support the following operations:

- Insert(e): Adds an integer e to S.
- Delete(e): Removes an integer e from S.
- Query (q) : Determines whether q belongs to the current set.

Design a data structure with the following guarantees:

- At all times, the space consumption is $O(|S|)$, i.e., linear to the number of elements currently in S.
- For any sequence of n operations (each being an insert, delete, or query), your algorithm must use $O(n)$ expected time in total.

