CSCI2100: Regular Exercise Set 7

Prepared by Yufei Tao

Problems marked with an asterisk may be difficult.

Problem 1. Let S_{1} and S_{2} be two sets of integers (they are not necessarily disjoint). We know that $\left|S_{1}\right|=\left|S_{2}\right|=n$ (i.e., each set has n integers). Design an algorithm to report the distinct integers in $S_{1} \cup S_{2}$ using $O(n)$ expected time. For example, if $S_{1}=\{1,5,6,9,10\}$ and $S_{2}=\{5,7,10,13,15\}$, you should output: $1,5,6,7,9,10,13,15$.

Solution. First, output everything in S_{1}. Then, create a hash table on S_{1} in $O\left(\left|S_{1}\right|\right)$ time. For every value $x \in S_{2}$, probe the hash table to see if $x \in S_{1}$. If not, output x. Each probe takes $O(1)$ expected time. Hence, the total cost of all the probes is $O\left(\left|S_{2}\right|\right)$ expected. The overall cost is therefore $O(n)$ expected.

Problem 2 (No Single Hash Function Works for All Sets). Let U and m be integers satisfying $U \geq m^{2}$. Fix a hash function h from $[U]$ to $[m]$, where $[x]$ represents the set of integers $\{1,2, \ldots, x\}$. Prove that there must be a set $S \subseteq[U]$ such that (i) $|S|=m$, and (ii) h maps all the elements of S to the same hash value.

Solution. For each $i \in[m]$, define $S_{i}=\{x \in[U] \mid h(x)=i\}$. Since $\sum_{i=1}^{m}\left|S_{i}\right|=U \geq m^{2}$, there is at least one $j \in[m]$ such that $\left|S_{j}\right| \geq U / m \geq m$. Construct a set S to include m arbitrary distinct elements from S_{j}. This S fulfills our purposes.

Problem 3*. Let S be a multi-set of n integers. Define the frequency of an integer x as the number of occurrences of x in S. Design an algorithm to produce an array that sorts the distinct integers in S by frequency. Your algorithm must terminate in $O(n)$ expected time. For example, suppose that $S=\{75,123,65,75,9,9,65,9,93\}$. Then you should output ($123,93,65,75,9$). Note that if two integers have the same frequency, their relative ordering is unimportant. For example, $(93,123,75,65,9)$ is another legal output.

Solution. We can collect the set T of distinct integers in S by hashing as follows. For every integer $x \in S$, check whether the hash table has already contained a copy of x. This takes $O(1)$ in expectation. If so, ignore x; otherwise, insert x into the hash table in $O(1)$ time. The collection requires $O(n)$ time overall.

We can then obtain the frequency of every distinct integer as follows. For each integer $x \in S$, find its copy in the hash table, and increase the counter of the copy by 1 (the counter initially set to 0). This takes $O(1)$ time per integer, and hence, $O(n)$ time overall.

Now we simply sort all the distinct integers by frequency. Note that the frequencies are in the domain from 1 to n. Hence, counting sort gets this done in $O(n)$ time.

Problem 4^{*}. Let S be a set of n key-value pairs of the form (k, v), where k is the key and v is the value. Preprocess S into a data structure so that the following queries can be answered efficiently. Given a pair $\left(q_{k}, q_{v}\right)$, a query

- Returns nothing if S contains no pair with key q_{k};
- Otherwise, it returns the number of pairs $(k, v) \in S$ such that $k=q_{k}$ and $v \leq q_{v}$.

Define the frequency of a key k as the number of pairs in S with key k. Define f as the maximum frequency of all keys. Your structure must use $O(n)$ space, and answer a query in $O(\log f)$ expected time. Furthermore, it must be possible to construct the structure $O(n \log f)$ time.

For example, suppose that $S=\{(75,35),(123,6),(65,32),(75,22),(9,1),(9,10),(65,74),(9,8)$, $(93,23)\}$. Then, given $(63,33)$, the query returns nothing. Given $(65,33)$, the query returns 1 . Given (65,2), the query returns 0 . In this example, $f=3$.

Solution. Collect the set T of distinct keys in S, and obtain their frequencies in $O(n)$ time (see the solution of Problem 2). Create a hash table on T in $O(n)$ time. For every key $k \in T$, create an array A_{k} whose length is equal to the frequency of k. Store in A_{k} all the values v such that (k, v) is a pair in S. Sort A_{k} in ascending order. The sorting takes $O\left(\left|A_{k}\right| \log \left|A_{k}\right|\right)=O\left(\left|A_{k}\right| \log f\right)$ time. Store the beginning address of A_{k} at the copy of k in the hash table. The overall construction time is $O\left(\sum_{k}\left|A_{k}\right| \log f\right)=O(n \log f)$. The space consumption is obviously $O(n)$.

To answer a query $\left(q_{k}, q_{v}\right)$, first probe the hash table to see if $q_{k} \in T$. If not, terminate the algorithm. Otherwise, perform binary search in $A_{q_{k}}$ in $O(\log f)$ time. The overall query time is $O(1)$ expected plus $O(\log f)$ worst case, which is $O(\log f)$ expected.

Problem 5** (Dynamic Hashing). Consider the following dynamic dictionary search problem. Let S be a dynamic set of integers. At the beginning, S is empty. We want to support the following operations:

- Insert (e) : Adds an integer e to S.
- Delete(e): Removes an integer e from S.
- Query (q) : Determines whether q belongs to the current set.

Design a data structure with the following guarantees:

- At all times, the space consumption is $O(|S|)$, i.e., linear to the number of elements currently in S.
- For any sequence of n operations (each being an insert, delete, or query), your algorithm must use $O(n)$ expected time in total.

Solution. If $|S| \leq 4$, we simply store the entire $|S|$ in an array of length 4. If $|S|>4$, we will maintain the hash function h whose output domain is [m], with m being a power of 2 and satisfying $|S| \leq m \leq 4|S|$. Accordingly, we also maintain a hash table T computed using h. Insert (e) is processed by inserting e into the linked list in T corresponding to the hash value $h(e)$. Similarly, delete (e) is processed by scanning the entire linked list of $h(e)$, and removing e from there.

If after an insertion $|S|$ reaches m, we double m, and reconstruct the hash table by randomly selecting a new hash function h whose output domain is $[m]$ (note that the domain size has doubled). If after a deletion $|S|$ equals $m / 4$, we halve m, and reconstruct the hash table by randomly selecting a new hash function h whose output domain is $[m]$. The amortized insertion/deletion cost is $O(1)$ by the same analysis we did for dynamic arrays.

A query is answered in the same way as discussed in the class.

An insertion obviously is handled in $O(1)$ time. The expected running time of a deletion is the same as that of a query, which is $O(1)$ when we choose h from universal family explained in the class. The space consumption is $O(|S|)$ at all times.

