CSCI2100: Regular Exercise Set 5

Prepared by Yufei Tao

Problems marked with an asterisk may be difficult.

Problem 1. Let S be a set of 9 integers $\{75,23,12,87,90,44,8,32,89\}$, stored in an array of length 9. Let us use quicksort to sort S. Recall that the algorithm randomly picks a pivot element, and then, recursively sorts two sets S_{1} and S_{2}, respectively. Suppose that the pivot is 89 . What are the contents of S_{1} and S_{2}, respectively? The ordering of the elements in S_{1} and S_{2} does not matter.

Problem 2 (Sorting a Multi-Set). Let A be an array of n integers. Note that some of the integers may be identical. Design an algorithm to arrange these integers in non-descending order. For example, if A stores the sequence of integers ($35,12,28,12,35,7,63,35$), you should output an array $(7,12,12,28,35,35,35,63)$.

Problem 3. Let S_{1} be a set of n integers, and S_{2} another set of n integers. Each of S_{1} and S_{2} is stored in an array of length n. The arrays are not necessarily sorted. Design an algorithm to determine whether $S_{1} \cap S_{2}$ is empty. Your algorithm must terminate in $O(n \log n)$ time.

Problem 4* (Inversions). Consider a set S of n integers that are stored in an array A (not necessarily sorted). Let e and e^{\prime} be two integers in S such that e is positioned before e^{\prime} in A. We call the pair $\left(e, e^{\prime}\right)$ an inversion in S if $e>e^{\prime}$. Design an algorithm to count the number of inversions in S. Your algorithm must terminate in $O(n \log n)$ time.

For example, if the array stores the sequence ($10,15,7,12$), then your algorithm should return 3 , because there are 3 inversions: (10,7), (15,7), and (15,12).

Problem 5* (Maxima). In two-dimensional space, a point (x, y) dominates another point (x^{\prime}, y^{\prime}) if $x>x^{\prime}$ and $y>y^{\prime}$. Let S be a set of n points in two-dimensional space, such that no two points share the same x- or y-coordinate. A point $p \in S$ is a maximal point of S if no point in S dominates p. For example, suppose that $S=\{(1,1),(5,2),(3,5)\}$; then S has two maximal points: $(5,2)$ and $(3,5)$.

Suppose that S is given in an array of length n, where the i-th $(1 \leq i \leq n)$ element stores the xand y-coordinates of the i-th point in S (i.e., each element of the array occupies 2 memory cells). For example, $S=\{(1,1),(5,2),(3,5)\}$ is given as the sequence of integers: $(1,1,5,2,3,5)$. Design an algorithm to find all the maximal points of S in $O(n \log n)$ time.

