CSCI2100: Regular Exercise Set 5

Prepared by Yufei Tao

Problems marked with an asterisk may be difficult.

Problem 1. Let S be a set of 9 integers $\{75,23,12,87,90,44,8,32,89\}$, stored in an array of length 9. Let us use quicksort to sort S. Recall that the algorithm randomly picks a pivot element, and then, recursively sorts two sets S_{1} and S_{2}, respectively. Suppose that the pivot is 89 . What are the contents of S_{1} and S_{2}, respectively? The ordering of the elements in S_{1} and S_{2} does not matter.

Solution. $S_{1}=\{75,23,12,87,44,8,32\}$ and $S_{2}=\{90\}$.
Problem 2 (Sorting a Multi-Set). Let A be an array of n integers. Note that some of the integers may be identical. Design an algorithm to arrange these integers in non-descending order. For example, if A stores the sequence of integers ($35,12,28,12,35,7,63,35$), you should output an array ($7,12,12,28,35,35,35,63$).

Solution. We will apply merge sort as a black box, namely, we do not need to change how the algorithm works at all. Let S be a set of n elements defined as follows: the i-th $(1 \leq i \leq n)$ element of S equals (i, v) where $v=A[i]$. Create an array B of length n, where $B[i]$ equals the i-th element in S. B can be generated easily from A in $O(n)$ time.

We apply merge sort to sort B, but compare two elements $e_{1}=\left(i_{1}, v_{1}\right)$ and $e_{2}=\left(i_{2}, v_{2}\right)$ in the following way:

- If $v_{1}<v_{2}$, then rule $e_{1}<e_{2}$
- If $v_{1}>v_{2}$, then rule $e_{1}>e_{2}$
- If $v_{1}=v_{2}$:
- If $i_{1}<i_{2}$, then rule $e_{1}<e_{2}$;
- Otherwise, rule $e_{1}>e_{2}$.

After B has been sorted, we can easily generate the output array from B in $O(n)$ time.
Problem 3. Let S_{1} be a set of n integers, and S_{2} another set of n integers. Each of S_{1} and S_{2} is stored in an array of length n. The arrays are not necessarily sorted. Design an algorithm to determine whether $S_{1} \cap S_{2}$ is empty. Your algorithm must terminate in $O(n \log n)$ time.

Solution. Sort S_{1} and S_{2} together as a multi-set (using the algorithm of Problem 2) in $O(n \log n)$ time. Then, scan the sorted list, and check whether there are two identical integers coming from different sets; this can be done in $O(n)$ time.

Problem 4* (Inversions). Consider a set S of n integers that are stored in an array A (not necessarily sorted). Let e and e^{\prime} be two integers in S such that e is positioned before e^{\prime} in A. We call the pair $\left(e, e^{\prime}\right)$ an inversion in S if $e>e^{\prime}$. Design an algorithm to count the number of inversions in S. Your algorithm must terminate in $O(n \log n)$ time.

For example, if the array stores the sequence $(10,15,7,12)$, then your algorithm should return 3 , because there are 3 inversions: $(10,7),(15,7)$, and $(15,12)$.

Solution. If $n=1$, simply return 0 . If $n \geq 2$, we divide A into two halves: (i) the first half includes the first $\lceil n / 2\rceil$ elements, and (ii) the second includes the rest. Let A_{1} be the array corresponding to the first half, and A_{2} be the array corresponding to the second. We count the number c_{1} of inversions in A_{1} recursively, and then count the number c_{2} of inversions in A_{2} recursively. We ensure that (i) when the execution returns from A_{1}, the array A_{1} has been sorted, and (ii) the same is true for A_{2}.

We now count the number c_{3} of such inversions $\left(e, e^{\prime}\right)$ that $e \in A_{1}$ and $e^{\prime} \in A_{2}$. This can be achieved in $O(n)$ time utilizing the fact that both A_{1} and A_{2} have been sorted. Initially, set i and j to 1 , and c_{3} to 0 . Next, repeat the following until either $i>\left|A_{1}\right|$ or $j>\left|A_{2}\right|$:

- If $A_{1}[i]<A_{2}[j]$, then increase c_{3} by $j-1$, and increase i by 1 ;
- Otherwise (i.e., $A_{1}[i]>A_{2}[j]$), increase j by 1 .

If at this moment $j=\left|A_{2}\right|+1$, increase c_{3} by $\left(\left|A_{1}\right|-i+1\right)\left|A_{2}\right|$. The total number of inversions equals $c_{1}+c_{2}+c_{3}$.

Before returning to the upper level of recursion, we merge A_{1} and A_{2} into one sorted list A^{\prime}, and copy the elements of A^{\prime} into A (which thus becomes sorted). This takes $O(n)$ time.

Let $f(n)$ be the worst-case running time of our algorithm. It holds that $f(1)=O(1)$, and $f(n)=2 \cdot f(\lceil n / 2\rceil)+O(n)$. By the master theorem, we have $f(n)=O(n \log n)$.

Problem 5* (Maxima). In two-dimensional space, a point (x, y) dominates another point $\left(x^{\prime}, y^{\prime}\right)$ if $x>x^{\prime}$ and $y>y^{\prime}$. Let S be a set of n points in two-dimensional space, such that no two points share the same x- or y-coordinate. A point $p \in S$ is a maximal point of S if no point in S dominates p. For example, suppose that $S=\{(1,1),(5,2),(3,5)\}$; then S has two maximal points: $(5,2)$ and $(3,5)$.

Suppose that S is given in an array of length n, where the i-th $(1 \leq i \leq n)$ element stores the xand y-coordinates of the i-th point in S (i.e., each element of the array occupies 2 memory cells). For example, $S=\{(1,1),(5,2),(3,5)\}$ is given as the sequence of integers: $(1,1,5,2,3,5)$. Design an algorithm to find all the maximal points of S in $O(n \log n)$ time.

Solution. First, sort all the points of S by x-coordinate in $O(n \log n)$ time. Then, process the points in descending order of x-coordinate as follows. Initially, set $y_{\max }$ to ∞. For each $i \in[1, n]$, let $p_{i}=\left(x_{i}, y_{i}\right)$ be the i-th point in the (descending) sorted order. If $y_{i}<y_{\max }$, ignore p_{i} and move on to the next i. Otherwise, report p_{i} as a maximal point, and set $y_{\max }$ to y_{i}. The processing obviously takes only $O(n)$ time, rendering the overall time complexity $O(n \log n)$.

