CSCI2100: Regular Exercise Set 4

Prepared by Yufei Tao

Problem 1. Recall that our RAM model has been extended with an atomic operation RANDOM(x, y) which, given integers x, y, returns an integer chosen uniformly at random from [x, y]. Suppose that you are allowed to call the operation *only* with x = 1 and y = 128. Describe an algorithm to obtain a uniformly random number between 1 and 100. Your algorithm must finish in O(1) expected time.

Solution. Call RANDOM(1,128) and let z be its return value. Output z if it is in [1,100]. Otherwise, repeat from the beginning. We need to call the operator twice in expectation because each time z has probability 100/128 to fall in the range we want.

Problem 2*. Suppose that we enforce an even harder constraint that you are allowed to call RANDOM(x, y) only with x = 0 and y = 1. Describe an algorithm to generate a uniformly random number in [1, n] for an arbitrary integer n. Your algorithm must finish in $O(\log n)$ expected time.

Solution. We first obtain the smallest power of 2 that is at least n. For this purpose, set x = 1, and double x each time until $x \ge n$. The final x is the power of 2 we are looking for. This takes $O(\log n)$ time.

Next we will generate a uniformly random number y in [1, x]. For this purpose, call RANDOM(0, 1), and let z be its return. If z = 0, we proceed to generate a random number in [1, x/2] recursively; otherwise, proceed in [(x/2) + 1, x] recursively. Note that the range of numbers has shrunk by half. The recursion goes on $O(\log n)$ steps before the range contains only one number, which is the y we want.

Return y if $y \le n$. Otherwise, repeat by generating another y. Since $y \ge x/2$, at most 2 repeats are needed in expectation. The overall time is therefore $O(\log n)$ in expectation.

Problem 3. For the k-selection problem, consider an input array A that has n = 120 elements. Our randomized algorithm selects a number v, and recurse into a smaller array A' if the rank of v is within [n/3, 2n/3] = [40, 80]. For k = 20, what is the probability that the size of A' is at most 60?

Solution. A' has size at most 60 if the rank of v is between 40 and 61. The probability that this happens is (61 - 40 + 1)/(80 - 40 + 1) = 22/41.

Problem 4* (Textbook Exercise 9.3-8). Let X[1..n] and Y[1..n] be two arrays, each containing n integers in ascending order. Consider that all the 2n integers are distinct. Let k be an integer between 1 and 2n. Give an $O(\log n)$ -time algorithm for finding the k-th smallest of the 2n elements.

Solution. We will consider a more general scenario where the two arrays can have different lengths. Let X[1..n] and Y[1..m] be two arrays, both sorted in ascending order. We want to find the k-th smallest of the n + m elements where $1 \le k \le n + m$. Our algorithm is recursive.

Base case: The base case happens when either n or m is 1. Without loss of generality, assume that m = 1. We can solve the problem in O(1) time as follows. If k = n + 1, the return $\max\{X[n], Y[1]\}$. Otherwise (i.e., $k \le n$):

- If X[k] < Y[1], then return X[k].
- Otherwise, return $\max\{X[k-1], Y[1]\}$.

Reduce case: Take (i) the median element u of X, namely, u = X[s] where $s = \lfloor n/2 \rfloor$, and (ii) the median element v of Y, namely, v = Y[t] where $t = \lfloor n/2 \rfloor$. Without loss of generality, assume that $v \leq u$ (otherwise, swap the roles of X and Y). We distinguish two cases:

- Case 1: $s + t \ge k$: None of the elements in X[s + 1..n] can possibly be the result. We recurse by searching for the k-th smallest element the s + m elements in X[1..s] and Y[1..m].
- Case 2: s + t < k: None of the elements in Y[1..t] can possibly be the result. We recurse by searching for the (k-t)-th smallest element the n+m-t elements in X[1..n] and Y[t+1..m].

In any case, we spend O(1) time and shrink one array by half for the recursion. Overall, the above shrinking can happen at most $\log_2 n + \log_2 m$ times before reaching the base case. It thus follows that the entire algorithm finishes in $O(\log n + \log m)$ time. Therefore, the original problem (where n = m) can be settled in $O(\log n)$ time.

Problem 5^{**} (A Simpler Randomized Algorithm for k-Selection, but with a More Tedious Analysis). In the k-selection problem, we have an array S of n distinct integers (not necessarily sorted). We would like to find the k-th smallest integer in S where $k \in [1, n]$. Here is another way of solving it using randomization. If n = 1, then we simply return the only element in S. For n > 1, we proceed as follows:

- Randomly pick an integer v in S, and obtain the rank r of v in S.
- If r = k, return v.
- If r > k, produce an array S' containing the integers of S that are smaller than v. Recurse by finding the k-th smallest in S'.
- Otherwise, produce an array S' containing the integers of S that are larger than v. Recurse by finding the (r k)-th smallest in S'.

Prove that the above algorithm finishes in O(n) expected time.

Solution. Let f(n) be the expected time of the above algorithm on an input of size n. Clearly, f(0) = O(1) and f(1) = O(1).

Consider n > 1. The rank r of v is uniformly distributed in [1, n], namely, for each $i \in [1, n]$, $\mathbf{Pr}[r = i] = 1/n$. When r = i, it determines a "left subset" containing the i - 1 integers of Ssmaller than v, and a "right subset" of size n - i. In the worst case, we recurse into the larger of the two subsets, namely, we would need to solve the problem on an array of size $\max\{i - 1, n - i\}$. This gives rise to the following recurrence (for some constant $\alpha > 0$):

$$f(n) \leq \alpha \cdot n + \frac{1}{n} \sum_{i=1}^{n} f(\max\{i-1, n-i\})$$
$$\leq \alpha \cdot n + \frac{2}{n} \sum_{i=\lceil n/2 \rceil}^{n} f(i-1)$$

We will prove that the recurrence leads to $f(n) \leq cn$ for some constant c > 0. First, this is obviously true for $n \leq 24$ when c is at least a certain constant, say β (when n = O(1)), the algorithm definitely finishes in constant time).

Suppose that $f(n) \leq cn$ for $n \leq k-1$ where $k \geq 24$. Set $t = \lfloor k/2 \rfloor$. We have:

$$\begin{aligned} f(k) &\leq \alpha \cdot k + \frac{2}{k} \sum_{i=t}^{k} c(i-1) = \alpha \cdot k + \frac{2c}{k} \sum_{i=t-1}^{k-1} i \\ &= \alpha \cdot k + \frac{2c}{k} \frac{(k+t-2)(k-t+1)}{2} < \alpha \cdot k + \frac{c(k^2+3t-t^2)}{k} \\ &= (\alpha+c)k + 3c - c\frac{t^2}{k} \le (\alpha+c)k + 3c - c\frac{(k/2)^2}{k} \\ &= (\alpha+c)k + 3c - ck/4 \end{aligned}$$
(1)

We need the above to be at most ck, namely:

$$\begin{aligned} (\alpha + c)k + 3c - ck/4 &\leq ck \\ \Leftrightarrow \alpha k + 3c &\leq ck/4 \\ &\Leftarrow \begin{cases} ck/4 \geq 2\alpha k \\ ck/4 \geq 6c. \\ &\Leftarrow \begin{cases} c \geq 8\alpha \\ k \geq 24. \end{cases} \end{aligned}$$

Hence, setting $c = \max\{\beta, 8\alpha\}$ completes the proof.

Remark. The above algorithm is procedurally simpler than the one we taught in the class, and is faster in practice too. It, however, is less interesting in two ways: (i) its analysis is more complicated (in the mundane way), and (ii) it does not illustrate the "if-failed-then-repeat" technique.